When a label is parsed, check if there is type information available for the
label. If so, check if the symbol is a function. If the symbol is a function
and we are in thumb mode and no explicit thumb_func has been emitted, adjust the
symbol data to indicate that the function definition is a thumb function.
The application of this inferencing is improved value handling in the object
file (the required thumb bit is set on symbols which are thumb functions). It
also helps improve compatibility with binutils.
The one complication that arises from this handling is the MCAsmStreamer. The
default implementation of getOrCreateSymbolData in MCStreamer does not support
tracking the symbol data. In order to support the semantics of thumb functions,
track symbol data in assembly streamer. Although O(n) in number of labels in
the TU, this is already done in various other streamers and as such the memory
overhead is not a practical concern in this scenario.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204544 91177308-0d34-0410-b5e6-96231b3b80d8
sym_a:
sym_d = sym_a + 1
This is the smallest fix I was able to extract from what got reverted in
r204203.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204527 91177308-0d34-0410-b5e6-96231b3b80d8
The commit r203762 introduced silent failure for complext SO expression, and it's even worse than compiler crash.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204427 91177308-0d34-0410-b5e6-96231b3b80d8
The Octeon cpu from Cavium Networks is mips64r2 based and has an extended
instruction set. In order to utilize this with LLVM, a new cpu feature "octeon"
and a subtarget feature "cnmips" is added. A small set of new instructions
(baddu, dmul, pop, dpop, seq, sne) is also added. LLVM generates dmul, pop and
dpop instructions with option -mcpu=octeon or -mattr=+cnmips.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204337 91177308-0d34-0410-b5e6-96231b3b80d8
Given
bar = foo + 4
.long bar
MC would eat the 4. GNU as includes it in the relocation. The rule seems to be
that a variable that defines a symbol is used in the relocation and one that
does not define a symbol is evaluated and the result included in the relocation.
Fixing this unfortunately required some other changes:
* Since the variable is now evaluated, it would prevent the ELF writer from
noticing the weakref marker the elf streamer uses. This patch then replaces
that with a VariantKind in MCSymbolRefExpr.
* Using VariantKind then requires us to look past other VariantKind to see
.weakref bar,foo
call bar@PLT
doing this also fixes
zed = foo +2
call zed@PLT
so that is a good thing.
* Looking past VariantKind means that the relocation selection has to use
the fixup instead of the target.
This is a reboot of the previous fixes for MC. I will watch the sanitizer
buildbot and wait for a build before adding back the previous fixes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204294 91177308-0d34-0410-b5e6-96231b3b80d8
Allow object files to be tagged with a version-min load command for iOS
or MacOSX.
Teach macho-dump to understand the version-min load commands for
testcases.
rdar://11337778
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204190 91177308-0d34-0410-b5e6-96231b3b80d8
The revision I'm reverting breaks handling of transitive aliases. This blocks us
and breaks sanitizer bootstrap:
http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-bootstrap/builds/2651
(and checked locally by Alexey).
This revision is the result of:
svn merge -r204059:204058 -r204028:204027 -r203962:203961 .
+ the regression test added to test/MC/ELF/alias.s
Another way to reproduce the regression with clang:
$ cat q.c
void a1();
void a2() __attribute__((alias("a1")));
void a3() __attribute__((alias("a2")));
void a1() {}
$ ~/work/llvm-build/bin/clang-3.5-good -c q.c && mv q.o good.o && \
~/work/llvm-build/bin/clang-3.5-bad -c q.c && mv q.o bad.o && \
objdump -t good.o bad.o
good.o: file format elf64-x86-64
SYMBOL TABLE:
0000000000000000 l df *ABS* 0000000000000000 q.c
0000000000000000 l d .text 0000000000000000 .text
0000000000000000 l d .data 0000000000000000 .data
0000000000000000 l d .bss 0000000000000000 .bss
0000000000000000 l d .comment 0000000000000000 .comment
0000000000000000 l d .note.GNU-stack 0000000000000000 .note.GNU-stack
0000000000000000 l d .eh_frame 0000000000000000 .eh_frame
0000000000000000 g F .text 0000000000000006 a1
0000000000000000 g F .text 0000000000000006 a2
0000000000000000 g F .text 0000000000000006 a3
bad.o: file format elf64-x86-64
SYMBOL TABLE:
0000000000000000 l df *ABS* 0000000000000000 q.c
0000000000000000 l d .text 0000000000000000 .text
0000000000000000 l d .data 0000000000000000 .data
0000000000000000 l d .bss 0000000000000000 .bss
0000000000000000 l d .comment 0000000000000000 .comment
0000000000000000 l d .note.GNU-stack 0000000000000000 .note.GNU-stack
0000000000000000 l d .eh_frame 0000000000000000 .eh_frame
0000000000000000 g F .text 0000000000000006 a1
0000000000000000 g F .text 0000000000000006 a2
0000000000000000 g .text 0000000000000000 a3
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204137 91177308-0d34-0410-b5e6-96231b3b80d8
This performs the equivalent of a .set directive in that it creates a symbol
which is an alias for another symbol or value which may possibly be yet
undefined. This directive also has the added property in that it marks the
aliased symbol as being a thumb function entry point, in the same way that the
.thumb_func directive does.
The current implementation fails one test due to an unrelated issue. Functions
within .thumb sections are not marked as thumb_func. The result is that
the aliasee function is not valued correctly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204059 91177308-0d34-0410-b5e6-96231b3b80d8
This is really a consistency fix. Since given
a = b
we propagate the information, we should propagate it too given
a = b + (1 - 1)
Fixes pr19145.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204028 91177308-0d34-0410-b5e6-96231b3b80d8
The previous deduping strategy was woefully inadequate - it only
considered the most recent file used and avoided emitting a duplicate in
that case - never considering the a/b/a scenario.
It was also lacking when it came to directory paths as the previous
filename would never match the current if the filename had been split
into file and directory components.
This change builds caching functionality into the line table at the
lowest level in an optional form (a file number of 0 indicates that one
should be chosen and returned) and will eventually be reused by the
normal source level debugging DWARF emission.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204027 91177308-0d34-0410-b5e6-96231b3b80d8
Microsoft PE/COFF Spec clearly states that the field is of signed interger
type. However, in reality, it's unsigned. If cl.exe needs to create a large
number of sections for COMDAT sections, it will just create more than 32768
sections. Handling large section number as negative number is not correct.
I think this is a spec bug.
Differential Revision: http://llvm-reviews.chandlerc.com/D3088
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203986 91177308-0d34-0410-b5e6-96231b3b80d8
We were marking the symbol as absolute instead of computing b's offset + the
expression value.
This fixes pr19126.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203962 91177308-0d34-0410-b5e6-96231b3b80d8
This changes the implementation of local directional labels to use a dedicated
map. With that it can then just use CreateTempSymbol, which is what the rest
of MC uses.
CreateTempSymbol doesn't do a great job at making sure the names are unique
(or being efficient when the names are not needed), but that should probably
be fixed in a followup patch.
This fixes pr18928.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203826 91177308-0d34-0410-b5e6-96231b3b80d8
VSX is an ISA extension supported on the POWER7 and later cores that enhances
floating-point vector and scalar capabilities. Among other things, this adds
<2 x double> support and generally helps to reduce register pressure.
The interesting part of this ISA feature is the register configuration: there
are 64 new 128-bit vector registers, the 32 of which are super-registers of the
existing 32 scalar floating-point registers, and the second 32 of which overlap
with the 32 Altivec vector registers. This makes things like vector insertion
and extraction tricky: this can be free but only if we force a restriction to
the right register subclass when needed. A new "minipass" PPCVSXCopy takes care
of this (although it could do a more-optimal job of it; see the comment about
unnecessary copies below).
Please note that, currently, VSX is not enabled by default when targeting
anything because it is not yet ready for that. The assembler and disassembler
are fully implemented and tested. However:
- CodeGen support causes miscompiles; test-suite runtime failures:
MultiSource/Benchmarks/FreeBench/distray/distray
MultiSource/Benchmarks/McCat/08-main/main
MultiSource/Benchmarks/Olden/voronoi/voronoi
MultiSource/Benchmarks/mafft/pairlocalalign
MultiSource/Benchmarks/tramp3d-v4/tramp3d-v4
SingleSource/Benchmarks/CoyoteBench/almabench
SingleSource/Benchmarks/Misc/matmul_f64_4x4
- The lowering currently falls back to using Altivec instructions far more
than it should. Worse, there are some things that are scalarized through the
stack that shouldn't be.
- A lot of unnecessary copies make it past the optimizers, and this needs to
be fixed.
- Many more regression tests are needed.
Normally, I'd fix these things prior to committing, but there are some
students and other contributors who would like to work this, and so it makes
sense to move this development process upstream where it can be subject to the
regular code-review procedures.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203768 91177308-0d34-0410-b5e6-96231b3b80d8
Support to the IAS was added to actually parse and handle the complex SO
expressions. However, the object file lowering was not updated to compensate
for the fact that the shift operand may be an absolute expression.
When trying to assemble to an object file, the lowering would fail while
succeeding when emitting purely assembly. Add an appropriate test.
The test case is inspired by the test case provided by Jiangning Liu who also
brought the issue to light.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203762 91177308-0d34-0410-b5e6-96231b3b80d8
When printing assembly we don't have a Layout object, but we can still
try to fold some constants.
Testcase by Ulrich Weigand.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203677 91177308-0d34-0410-b5e6-96231b3b80d8