Maintaining this kind of checking in different places is dangerous, extending
Instruction::isSameOperationAs consolidates this logic into one place. Here
I've added an optional flags parameter and two flags that are important for
vectorization: CompareIgnoringAlignment and CompareUsingScalarTypes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159329 91177308-0d34-0410-b5e6-96231b3b80d8
topologies, it is quite possible for a leaf node to have huge multiplicity, for
example: x0 = x*x, x1 = x0*x0, x2 = x1*x1, ... rapidly gives a value which is x
raised to a vast power (the multiplicity, or weight, of x). This patch fixes
the computation of weights by correctly computing them no matter how big they
are, rather than just overflowing and getting a wrong value. It turns out that
the weight for a value never needs more bits to represent than the value itself,
so it is enough to represent weights as APInts of the same bitwidth and do the
right overflow-avoiding dance steps when computing weights. As a side-effect it
reduces the number of multiplies needed in some cases of large powers. While
there, in view of external uses (eg by the vectorizer) I made LinearizeExprTree
static, pushing the rank computation out into users. This is progress towards
fixing PR13021.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158358 91177308-0d34-0410-b5e6-96231b3b80d8
Instruction::IsIdenticalToWhenDefined.
This manifested itself when inlining two calls to the same function. The
inlined function had a switch statement that returned one of a set of
global variables. Without this modification, the two phi instructions that
chose values from the branches of the switch instruction inlined from the
callee were considered equivalent and jump-threading replaced a load for the
first switch value with a phi selecting from the second switch, thereby
producing incorrect code.
This patch has been tested with "make check-all", "lnt runteste nt", and
llvm self-hosted, and on the original program that had this problem,
wireshark.
<rdar://problem/11025519>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156548 91177308-0d34-0410-b5e6-96231b3b80d8
into Analysis as a standalone function, since there's no need for
it to be in VMCore. Also, update it to use isKnownNonZero and
other goodies available in Analysis, making it more precise,
enabling more aggressive optimization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146610 91177308-0d34-0410-b5e6-96231b3b80d8
This implements the 'landingpad' instruction. It's used to indicate that a basic
block is a landing pad. There are several restrictions on its use (see
LangRef.html for more detail). These restrictions allow the exception handling
code to gather the information it needs in a much more sane way.
This patch has the definition, implementation, C interface, parsing, and bitcode
support in it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137501 91177308-0d34-0410-b5e6-96231b3b80d8
This adds the 'resume' instruction class, IR parsing, and bitcode reading and
writing. The 'resume' instruction resumes propagation of an existing (in-flight)
exception whose unwinding was interrupted with a 'landingpad' instruction (to be
added later).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136589 91177308-0d34-0410-b5e6-96231b3b80d8
working on x86 (at least for trivial testcases); other architectures will
need more work so that they actually emit the appropriate instructions for
orderings stricter than 'monotonic'. (As far as I can tell, the ARM, PPC,
Mips, and Alpha backends need such changes.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136457 91177308-0d34-0410-b5e6-96231b3b80d8
'atomicrmw' instructions, which allow representing all the current atomic
rmw intrinsics.
The allowed operands for these instructions are heavily restricted at the
moment; we can probably loosen it a bit, but supporting general
first-class types (where it makes sense) might get a bit complicated,
given how SelectionDAG works.
As an initial cut, these operations do not support specifying an alignment,
but it would be possible to add if we think it's useful. Specifying an
alignment lower than the natural alignment would be essentially
impossible to support on anything other than x86, but specifying a greater
alignment would be possible. I can't think of any useful optimizations which
would use that information, but maybe someone else has ideas.
Optimizer/codegen support coming soon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136404 91177308-0d34-0410-b5e6-96231b3b80d8
This is just a LangRef entry and reading/writing/memory representation; optimizer+codegen support coming soon.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136009 91177308-0d34-0410-b5e6-96231b3b80d8
of calling getAllMetadata(). This is semantically identical, but doing
it this way avoids unpacking the DebugLoc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135173 91177308-0d34-0410-b5e6-96231b3b80d8
testing for dereferenceable pointers into a helper function,
isDereferenceablePointer. Teach it how to reason about GEPs
with simple non-zero indices.
Also eliminate ArgumentPromtion's IsAlwaysValidPointer,
which didn't check for weak externals or out of range gep
indices.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118840 91177308-0d34-0410-b5e6-96231b3b80d8
being a TrackingVH<MDNode> to a NewDebugLoc, shrinking
sizeof(Instruction) a lot, and providing clients the ability
to deal with locations in terms of NewDebugLoc instead of
having to deal with Metadata. This is still fully compatible
with all clients that *do* use MDNodes for everything of
course.
No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100088 91177308-0d34-0410-b5e6-96231b3b80d8
the storage of !dbg metadata kinds in the instruction themselves.
The on-the-side hash table works great for metadata that not-all
instructions get, or for metadata that only exists when optimizing.
But when compile-time is everything, it isn't great.
I'm not super thrilled with the fact that this plops a TrackingVH in
Instruction, because it grows it by 3 words. I'm investigating
alternatives, but this should be a step in the right direction in any
case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@99957 91177308-0d34-0410-b5e6-96231b3b80d8
returned null, and may not have been big enough in any case.
Thanks to Jay Foad for pointing this out!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@92452 91177308-0d34-0410-b5e6-96231b3b80d8
I asked Devang to do back on Sep 27. Instead of going through the
MetadataContext class with methods like getMD() and getMDs(), just
ask the instruction directly for its metadata with getMetadata()
and getAllMetadata().
This includes a variety of other fixes and improvements: previously
all Value*'s were bloated because the HasMetadata bit was thrown into
value, adding a 9th bit to a byte. Now this is properly sunk down to
the Instruction class (the only place where it makes sense) and it
will be folded away somewhere soon.
This also fixes some confusion in getMDs and its clients about
whether the returned list is indexed by the MDID or densely packed.
This is now returned sorted and densely packed and the comments make
this clear.
This introduces a number of fixme's which I'll follow up on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@92235 91177308-0d34-0410-b5e6-96231b3b80d8
Remove LowerAllocations pass.
Update some more passes to treate free calls just like they were treating FreeInst.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85176 91177308-0d34-0410-b5e6-96231b3b80d8
In getMallocArraySize(), fix bug in the case that array size is the product of 2 constants.
Extend isArrayMalloc() and getMallocArraySize() to handle case where malloc is used as char array.
Ensure that ArraySize in LowerAllocations::runOnBasicBlock() is correct type.
Extend Instruction::isSafeToSpeculativelyExecute() to handle malloc calls.
Add verification for malloc calls.
Reviewed by Dan Gohman.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@82257 91177308-0d34-0410-b5e6-96231b3b80d8