function. This is a bit tidier anyways and will make a subsquent patch
simpler as I want to add another case to this combine.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226746 91177308-0d34-0410-b5e6-96231b3b80d8
When two calls from the same MDLocation are inlined they currently get
treated as one inlined function call (creating difficulty debugging,
duplicate variables, etc).
Clang worked around this by including column information on inline calls
which doesn't address LTO inlining or calls to the same function from
the same line and column (such as through a macro). It also didn't
address ctor and member function calls.
By making the inlinedAt locations distinct, every call site has an
explicitly distinct location that cannot be coalesced with any other
call.
This can produce linearly (2x in the worst case where every call is
inlined and the call instruction has a non-call instruction at the same
location) more debug locations. Any increase beyond that are in cases
where the Clang workaround was insufficient and the new scheme is
creating necessary distinct nodes that were being erroneously coalesced
previously.
After this change to LLVM the incomplete workarounds in Clang. That
should reduce the number of debug locations (in a build without column
info, the default on Darwin, not the default on Linux) by not creating
pseudo-distinct locations for every call to an inline function.
(oh, and I made the inlined-at chain rebuilding iterative instead of
recursive because I was having trouble wrapping my head around it the
way it was - open to discussion on the right design for that function
(including going back to a recursive solution))
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226736 91177308-0d34-0410-b5e6-96231b3b80d8
The return type of a thunk is meaningless, we just want the arguments
and return value to be forwarded.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226708 91177308-0d34-0410-b5e6-96231b3b80d8
Previously we always stored 4 bytes of origin at the destination address
even for 8-byte (and longer) stores.
This should fix rare missing, or incorrect, origin stacks in MSan reports.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226658 91177308-0d34-0410-b5e6-96231b3b80d8
Because in its primary function pass the combiner is run repeatedly over
the same function until doing so produces no changes, it is essentially
to not re-allocate the worklist. However, as a utility, the more common
pattern would be to put a limited set of instructions in the worklist
rather than the entire function body. That is also the more likely
pattern when used by the new pass manager.
The result is a very light weight combiner that does the visiting with
a separable worklist. This can then be wrapped up in a helper function
for users that want a combiner utility, or as I have here it can be
wrapped up in a pass which manages the iterations used when combining an
entire function's instructions.
Hopefully this removes some of the worst of the interface warts that
became apparant with the last patch here. However, there is clearly more
work. I've again left some FIXMEs for the most egregious. The ones that
stick out to me are the exposure of the worklist and IR builder as
public members, and the use of pointers rather than references. However,
fixing these is likely to be much more mechanical and less interesting
so I didn't want to touch them in this patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226655 91177308-0d34-0410-b5e6-96231b3b80d8
SimplifyLibCalls utility by sinking it into the specific call part of
the combiner.
This will avoid us needing to do any contortions to build this object in
a subsequent refactoring I'm doing and seems generally better factored.
We don't need this utility everywhere and it carries no interesting
state so we might as well build it on demand.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226654 91177308-0d34-0410-b5e6-96231b3b80d8
a more direct approach: a type-erased glorified function pointer. Now we
can pass a function pointer into this for the easy case and we can even
pass a lambda into it in the interesting case in the instruction
combiner.
I'll be using this shortly to simplify the interfaces to InstCombiner,
but this helps pave the way and seems like a better design for the
libcall simplifier utility.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226640 91177308-0d34-0410-b5e6-96231b3b80d8
This creates a small internal pass which runs the InstCombiner over
a function. This is the hard part of porting InstCombine to the new pass
manager, as at this point none of the code in InstCombine has access to
a Pass object any longer.
The resulting interface for the InstCombiner is pretty terrible. I'm not
planning on leaving it that way. The key thing missing is that we need
to separate the worklist from the combiner a touch more. Once that's
done, it should be possible for *any* part of LLVM to just create
a worklist with instructions, populate it, and then combine it until
empty. The pass will just be the (obvious and important) special case of
doing that for an entire function body.
For now, this is the first increment of factoring to make all of this
work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226618 91177308-0d34-0410-b5e6-96231b3b80d8
don't get muddied up by formatting changes.
Some of these don't really seem like improvements to me, but they also
don't seem any worse and I care much more about not formatting them
manually than I do about the particular formatting. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226610 91177308-0d34-0410-b5e6-96231b3b80d8
This reapplies r225379.
ChangeLog:
- The assertion that this commit previously ran into about the inability
to handle indirect variables has since been removed and the backend
can handle this now.
- Testcases were upgrade to the new MDLocation format.
- Instead of keeping a DebugDeclares map, we now use
llvm::FindAllocaDbgDeclare().
Original commit message follows.
Debug info: Teach SROA how to update debug info for fragmented variables.
This allows us to generate debug info for extremely advanced code such as
typedef struct { long int a; int b;} S;
int foo(S s) {
return s.b;
}
which at -O1 on x86_64 is codegen'd into
define i32 @foo(i64 %s.coerce0, i32 %s.coerce1) #0 {
ret i32 %s.coerce1, !dbg !24
}
with this patch we emit the following debug info for this
TAG_formal_parameter [3]
AT_location( 0x00000000
0x0000000000000000 - 0x0000000000000006: rdi, piece 0x00000008, rsi, piece 0x00000004
0x0000000000000006 - 0x0000000000000008: rdi, piece 0x00000008, rax, piece 0x00000004 )
AT_name( "s" )
AT_decl_file( "/Volumes/Data/llvm/_build.ninja.release/test.c" )
Thanks to chandlerc, dblaikie, and echristo for their feedback on all
previous iterations of this patch!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226598 91177308-0d34-0410-b5e6-96231b3b80d8
The new code does not create new basic blocks in the case when shadow is a
compile-time constant; it generates either an unconditional __msan_warning
call or nothing instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226569 91177308-0d34-0410-b5e6-96231b3b80d8
along with the other analyses.
The most obvious reason why is because eventually I need to separate out
the pass layer from the rest of the instcombiner. However, it is also
probably a compile time win as every query through the pass manager
layer is pretty slow these days.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226550 91177308-0d34-0410-b5e6-96231b3b80d8
This patch fixes 2 issues in reorderInputsAccordingToOpcode
1) AllSameOpcodeLeft and AllSameOpcodeRight was being calculated incorrectly resulting in code not being vectorized in few cases.
2) Adds logic to reorder operands if we get longer chain of consecutive loads enabling vectorization. Handled the same for cases were we have AltOpcode.
Thanks Michael for inputs and review.
Review: http://reviews.llvm.org/D6677
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226547 91177308-0d34-0410-b5e6-96231b3b80d8
Now that the clone methods used by `MapMetadata()` don't do any
remapping (and return a temporary), they make more sense as member
functions on `MDNode` (and subclasses).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226541 91177308-0d34-0410-b5e6-96231b3b80d8
a DominatorTree argument as that is the analysis that it wants to
update.
This removes the last non-loop utility function in Utils/ which accepts
a raw Pass argument.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226537 91177308-0d34-0410-b5e6-96231b3b80d8
As part of PR22235, introduce `DwarfNode` and `GenericDwarfNode`. The
former is a metadata node with a DWARF tag. The latter matches our
current (generic) schema of a header with string (and stringified
integer) data and an arbitrary number of operands.
This doesn't move it into place yet; that change will require a large
number of testcase updates.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226529 91177308-0d34-0410-b5e6-96231b3b80d8
As pointed out in r226501, the distinction between `MDNode` and
`UniquableMDNode` is confusing. When we need subclasses of `MDNode`
that don't use all its functionality it might make sense to break it
apart again, but until then this makes the code clearer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226520 91177308-0d34-0410-b5e6-96231b3b80d8
Take advantage of the new ability of temporary nodes to mutate to
distinct and uniqued nodes to greatly simplify the `MapMetadata()`
helper functions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226511 91177308-0d34-0410-b5e6-96231b3b80d8
Change `MDTuple::getTemporary()` and `MDLocation::getTemporary()` to
return (effectively) `std::unique_ptr<T, MDNode::deleteTemporary>`, and
clean up call sites. (For now, `DIBuilder` call sites just call
`release()` immediately.)
There's an accompanying change in each of clang and polly to use the new
API.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226504 91177308-0d34-0410-b5e6-96231b3b80d8
Remove `MDNodeFwdDecl` (as promised in r226481). Aside from API
changes, there's no real functionality change here.
`MDNode::getTemporary()` now forwards to `MDTuple::getTemporary()`,
which returns a tuple with `isTemporary()` equal to true.
The main point is that we can now add temporaries of other `MDNode`
subclasses, needed for PR22235 (I introduced `MDNodeFwdDecl` in the
first place because I didn't recognize this need, and thought they were
only needed to handle forward references).
A few things left out of (or highlighted by) this commit:
- I've had to remove the (few) uses of `std::unique_ptr<>` to deal
with temporaries, since the destructor is no longer public.
`getTemporary()` should probably return the equivalent of
`std::unique_ptr<T, MDNode::deleteTemporary>`.
- `MDLocation::getTemporary()` doesn't exist yet (worse, it actually
does exist, but does the wrong thing: `MDNode::getTemporary()` is
inherited and returns an `MDTuple`).
- `MDNode` now only has one subclass, `UniquableMDNode`, and the
distinction between them is actually somewhat confusing.
I'll fix those up next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226501 91177308-0d34-0410-b5e6-96231b3b80d8
Change `MDNode::isDistinct()` to only apply to 'distinct' nodes (not
temporaries), and introduce `MDNode::isUniqued()` and
`MDNode::isTemporary()` for the other two possibilities.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226482 91177308-0d34-0410-b5e6-96231b3b80d8
and updated.
This may appear to remove handling for things like alias analysis when
splitting critical edges here, but in fact no callers of SplitEdge
relied on this. Similarly, all of them wanted to preserve LCSSA if there
was any update of the loop info. That makes the interface much simpler.
With this, all of BasicBlockUtils.h is free of Pass arguments and
prepared for the new pass manager. This is tho majority of utilities
that relied on pass arguments.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226459 91177308-0d34-0410-b5e6-96231b3b80d8
while refactoring this API for the new pass manager.
No functionality changed here, the code didn't actually support this
option.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226457 91177308-0d34-0410-b5e6-96231b3b80d8
APIs and replace it and numerous booleans with an option struct.
The critical edge splitting API has a really large surface of flags and
so it seems worth burning a small option struct / builder. This struct
can be constructed with the various preserved analyses and then flags
can be flipped in a builder style.
The various users are now responsible for directly passing along their
analysis information. This should be enough for the critical edge
splitting to work cleanly with the new pass manager as well.
This API is still pretty crufty and could be cleaned up a lot, but I've
focused on this change just threading an option struct rather than
a pass through the API.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226456 91177308-0d34-0410-b5e6-96231b3b80d8
we can while splitting critical edges.
The only code which called this and didn't require simplified loops to
be preserved is polly, and the code behaves correctly there anyways.
Without this change, it becomes really hard to share this code with the
new pass manager where things like preserving loop simplify form don't
make any sense.
If anyone discovers this code behaving incorrectly, what it *should* be
testing for is whether the loops it needs to be in simplified form are
in fact in that form. It should always be trying to preserve that form
when it exists.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226443 91177308-0d34-0410-b5e6-96231b3b80d8
In case of blocks with many memory-accessing instructions, alias checking can take lot of time
(because calculating the memory dependencies has quadratic complexity).
I chose a limit which resulted in no changes when running the benchmarks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226439 91177308-0d34-0410-b5e6-96231b3b80d8
SplitLandingPadPredecessors and remove the Pass argument from its
interface.
Another step to the utilities being usable with both old and new pass
managers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226426 91177308-0d34-0410-b5e6-96231b3b80d8
rather than relying on the pass object.
This one is a bit annoying, but will pay off. First, supporting this one
will make the next one much easier, and for utilities like LoopSimplify,
this is moving them (slowly) closer to not having to pass the pass
object around throughout their APIs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226396 91177308-0d34-0410-b5e6-96231b3b80d8
interface, removing Pass from its interface.
This also makes those analyses optional so that passes which don't even
preserve these (or use them) can skip the logic entirely.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226394 91177308-0d34-0410-b5e6-96231b3b80d8
optionally updated by MergeBlockIntoPredecessors.
No functionality changed, just refactoring to clear the way for the new
pass manager.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226392 91177308-0d34-0410-b5e6-96231b3b80d8
Instead of querying the pass every where we need to, do that once and
cache a pointer in the pass object. This is both simpler and I'm about
to add yet another place where we need to dig out that pointer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226391 91177308-0d34-0410-b5e6-96231b3b80d8
accepting a Pass and querying it for analyses.
This is necessary to allow the utilities to work both with the old and
new pass managers, and I also think this makes the interface much more
clear and helps the reader know what analyses the utility can actually
handle. I plan to repeat this process iteratively to clean up all the
pass utilities.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226386 91177308-0d34-0410-b5e6-96231b3b80d8
cleaner to derive from the generic base.
Thise removes a ton of boiler plate code and somewhat strange and
pointless indirections. It also remove a bunch of the previously needed
friend declarations. To fully remove these, I also lifted the verify
logic into the generic LoopInfoBase, which seems good anyways -- it is
generic and useful logic even for the machine side.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226385 91177308-0d34-0410-b5e6-96231b3b80d8
This was dead even before I refactored how we initialized it, but my
refactoring made it trivially dead and it is now caught by a Clang
warning. This fixes the warning and should clean up the -Werror bot
failures (sorry!).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226376 91177308-0d34-0410-b5e6-96231b3b80d8
a LoopInfoWrapperPass to wire the object up to the legacy pass manager.
This switches all the clients of LoopInfo over and paves the way to port
LoopInfo to the new pass manager. No functionality change is intended
with this iteration.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226373 91177308-0d34-0410-b5e6-96231b3b80d8
IRCE eliminates range checks of the form
0 <= A * I + B < Length
by splitting a loop's iteration space into three segments in a way
that the check is completely redundant in the middle segment. As an
example, IRCE will convert
len = < known positive >
for (i = 0; i < n; i++) {
if (0 <= i && i < len) {
do_something();
} else {
throw_out_of_bounds();
}
}
to
len = < known positive >
limit = smin(n, len)
// no first segment
for (i = 0; i < limit; i++) {
if (0 <= i && i < len) { // this check is fully redundant
do_something();
} else {
throw_out_of_bounds();
}
}
for (i = limit; i < n; i++) {
if (0 <= i && i < len) {
do_something();
} else {
throw_out_of_bounds();
}
}
IRCE can deal with multiple range checks in the same loop (it takes
the intersection of the ranges that will make each of them redundant
individually).
Currently IRCE does not do any profitability analysis. That is a
TODO.
Please note that the status of this pass is *experimental*, and it is
not part of any default pass pipeline. Having said that, I will love
to get feedback and general input from people interested in trying
this out.
This pass was originally r226201. It was reverted because it used C++
features not supported by MSVC 2012.
Differential Revision: http://reviews.llvm.org/D6693
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226238 91177308-0d34-0410-b5e6-96231b3b80d8
The change used C++11 features not supported by MSVC 2012. I will fix
the change to use things supported MSVC 2012 and recommit shortly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226216 91177308-0d34-0410-b5e6-96231b3b80d8
IRCE eliminates range checks of the form
0 <= A * I + B < Length
by splitting a loop's iteration space into three segments in a way
that the check is completely redundant in the middle segment. As an
example, IRCE will convert
len = < known positive >
for (i = 0; i < n; i++) {
if (0 <= i && i < len) {
do_something();
} else {
throw_out_of_bounds();
}
}
to
len = < known positive >
limit = smin(n, len)
// no first segment
for (i = 0; i < limit; i++) {
if (0 <= i && i < len) { // this check is fully redundant
do_something();
} else {
throw_out_of_bounds();
}
}
for (i = limit; i < n; i++) {
if (0 <= i && i < len) {
do_something();
} else {
throw_out_of_bounds();
}
}
IRCE can deal with multiple range checks in the same loop (it takes
the intersection of the ranges that will make each of them redundant
individually).
Currently IRCE does not do any profitability analysis. That is a
TODO.
Please note that the status of this pass is *experimental*, and it is
not part of any default pass pipeline. Having said that, I will love
to get feedback and general input from people interested in trying
this out.
Differential Revision: http://reviews.llvm.org/D6693
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226201 91177308-0d34-0410-b5e6-96231b3b80d8
This patch was generated by a clang tidy checker that is being open sourced.
The documentation of that checker is the following:
/// The emptiness of a container should be checked using the empty method
/// instead of the size method. It is not guaranteed that size is a
/// constant-time function, and it is generally more efficient and also shows
/// clearer intent to use empty. Furthermore some containers may implement the
/// empty method but not implement the size method. Using empty whenever
/// possible makes it easier to switch to another container in the future.
Patch by Gábor Horváth!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226161 91177308-0d34-0410-b5e6-96231b3b80d8
The pass is really just a means of accessing a cached instance of the
TargetLibraryInfo object, and this way we can re-use that object for the
new pass manager as its result.
Lots of delta, but nothing interesting happening here. This is the
common pattern that is developing to allow analyses to live in both the
old and new pass manager -- a wrapper pass in the old pass manager
emulates the separation intrinsic to the new pass manager between the
result and pass for analyses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226157 91177308-0d34-0410-b5e6-96231b3b80d8