it's only really useful if you're going to crash anyways. Use it in the pretty stack trace
printer to kill the compiler if we hang while printing the stack trace.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177962 91177308-0d34-0410-b5e6-96231b3b80d8
Clients of MemoryBuffer::getOpenFile expect it not to take ownership of the file
descriptor passed in. So don't.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176995 91177308-0d34-0410-b5e6-96231b3b80d8
to create the parent path.
This can happen if the path is a relative filename and the current directory was removed.
Thanks to Daniel D. for the hint in fixing it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176226 91177308-0d34-0410-b5e6-96231b3b80d8
This change lets us bootstrap LLVM/Clang under ASan and MSan. It contains
fixes for 2 issues:
- X86JIT reads return address from stack, which MSan does not know is
initialized.
- bugpoint tests run binaries with RLIMIT_AS. This does not work with certain
Sanitizers.
We are no longer including config.h in Compiler.h with this change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174306 91177308-0d34-0410-b5e6-96231b3b80d8
Remove the use of the 't' length modifier to avoid a gcc warning. Based
on usage, 32 bits of precision is good enough for printing a stack
offset for a stack trace.
't' length modifier isn't in C++03 but it *is* in C++11. Added a FIXME
to reintroduce once LLVM makes the switch to C++11.
Reviewer: gribozavr
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173711 91177308-0d34-0410-b5e6-96231b3b80d8
failing to create the unique file because the path doesn't exist,
don't fail if someone else manages to create the path before we do.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172032 91177308-0d34-0410-b5e6-96231b3b80d8
into a new function llvm::sys::PrintStackTrace, so that it's available to clients for logging purposes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171989 91177308-0d34-0410-b5e6-96231b3b80d8
leaving this undefined, and despite the sentence in the standard that
seems to require it, I'll cede the point and assume its a bug in the
wording. Other parts of POSIX regularly allow for things to be -1
instead of undefined, this should too. Makes things more consistent too.
This should have to real impact for folks though.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171574 91177308-0d34-0410-b5e6-96231b3b80d8
defines _POSIX_CPUTIME but doesn't support the clock_* functions.
I don't test the value of _POSIX_CPUTIME because the spec merely says
that if it is defined, the CPU-specific timers are available, whereas it
says that _POSIX_TIMERS must be defined and defined to a value greater
than zero. However, this may not work, as the POSIX spec clearly states:
"If the symbolic constant _POSIX_CPUTIME is defined, then the symbolic
constant _POSIX_TIMERS shall also be defined by the implementation to
have the value 200112L."
If this doesn't work, I'll add more hacks for Darwin.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171565 91177308-0d34-0410-b5e6-96231b3b80d8
wall time, user time, and system time since a process started.
For walltime, we currently use TimeValue's interface and a global
initializer to compute a close approximation of total process runtime.
For user time, this adds support for an somewhat more precise timing
mechanism -- clock_gettime with the CLOCK_PROCESS_CPUTIME_ID clock
selected.
For system time, we have to do a full getrusage call to extract the
system time from the OS. This is expensive but unavoidable.
In passing, clean up the implementation of the old APIs and fix some
latent bugs in the Windows code. This might have manifested on Windows
ARM systems or other systems with strange 64-bit integer behavior.
The old API for this both user time and system time simultaneously from
a single getrusage call. While this results in fewer system calls, it
also results in a lower precision user time and if only user time is
desired, it introduces a higher overhead. It may be worthwhile to switch
some of the pass timers to not track system time and directly track user
and wall time. The old API also tracked walltime in a confusing way --
it just set it to the current walltime rather than providing any measure
of wall time since the process started the way buth user and system time
are tracked. The new API is more consistent here.
The plan is to eventually implement these methods for a *child* process
by using the wait3(2) system call to populate an rusage struct
representing the whole subprocess execution. That way, after waiting on
a child process its stats will become accurate and cheap to query.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171551 91177308-0d34-0410-b5e6-96231b3b80d8
Implement the old API in terms of the new one. This simplifies the
implementation on Windows which can now re-use the self_process's once
initialization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171330 91177308-0d34-0410-b5e6-96231b3b80d8
Fix a truly odd namespace qualifier that was flat out wrong in the
process. The fully qualified namespace would have been
llvm::sys::TimeValue, llvm::TimeValue makes no sense.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171292 91177308-0d34-0410-b5e6-96231b3b80d8
The coding style used here is not LLVM's style because this is modeled
after a Boost interface and thus done in the style of a candidate C++
standard library interface. I'll probably end up proposing it as
a standard C++ library if it proves to be reasonably portable and
useful.
This is just the most basic parts of the interface -- getting the
process ID out of it. However, it helps sketch out some of the boiler
plate such as the base class, derived class, shared code, and static
factory function. It also introduces a unittest so that I can
incrementally ensure this stuff works.
However, I've not even compiled this code for Windows yet. I'll try to
fix any Windows fallout from the bots, and if I can't fix it I'll revert
and get someone on Windows to help out. There isn't a lot more that is
mandatory, so soon I'll switch to just stubbing out the Windows side and
get Michael Spencer to help with implementation as he can test it
directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171289 91177308-0d34-0410-b5e6-96231b3b80d8
missed in the first pass because the script didn't yet handle include
guards.
Note that the script is now able to handle all of these headers without
manual edits. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169224 91177308-0d34-0410-b5e6-96231b3b80d8
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
Rationale:
1) This was the name in the comment block. ;]
2) It matches Clang's __has_feature naming convention.
3) It matches other compiler-feature-test conventions.
Sorry for the noise. =]
I've also switch the comment block to use a \brief tag and not duplicate
the name.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168996 91177308-0d34-0410-b5e6-96231b3b80d8
- The code could infinite loop trying to create unique files, if the directory
containing the unique file exists, but open() calls on non-existent files in
the path return ENOENT. This is true on the /dev/fd filesystem, for example.
- Will add a clang side test case for this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@168081 91177308-0d34-0410-b5e6-96231b3b80d8
- Similar to Path::eraseFromDisk(), we don't want LLVM to remove things like
/dev/null, even if it has the permission.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166105 91177308-0d34-0410-b5e6-96231b3b80d8
For example, under a Linux chroot, /proc/ might not be mounted.
Therefor, we test if this file exist. If it is the case, use it (the current
behavior). Otherwise, we fall back to the detection used by *BSD.
The issue has been reported initially on the Debian bug tracker:
http://bugs.debian.org/674588
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164676 91177308-0d34-0410-b5e6-96231b3b80d8
whether or not we want to print out backtrace information. Useful
for libraries that don't need backtrace information on a crash.
rdar://11844710
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164426 91177308-0d34-0410-b5e6-96231b3b80d8
the address of it. Found by a checking STL implementation used on
a dragonegg builder. Sorry about this one. =/
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158582 91177308-0d34-0410-b5e6-96231b3b80d8
This is likely only the tip of the ice berg, but this particular bug
caused any double-free on a glibc system to turn into a deadlock! It is
not generally safe to either allocate or release heap memory from within
the signal handler. The 'pop_back()' in RemoveFilesToRemove was deleting
memory and causing the deadlock. What's worse, eraseFromDisk in PathV1
has lots of allocation and deallocation paths. We even passed 'true' in
a place that would have caused the *signal handler* to try to run the
'system' system call and shell out to 'rm -rf'. That was never going to
work...
This patch switches the file removal to use a vector of strings so that
the exact text needed for the 'unlink' system call can be stored there.
It switches the loop to be a boring indexed loop, and directly calls
unlink without looking at the error. It also works quite hard to ensure
that calling 'c_str()' is safe, by ensuring that the non-signal-handling
code path that manipulates the vector always leaves it in a state where
every element has already had 'c_str()' called at least once.
I dunno exactly how overkill this is, but it fixes the
deadlock-on-double free issue, and seems likely to prevent any other
issues from sneaking up.
Sorry for not having a test case, but I *really* don't know how to test
signal handling code easily....
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158580 91177308-0d34-0410-b5e6-96231b3b80d8
Apart from being slightly cheaper, this fixes a real bug that hits 32 bit
linux systems. When passing a file larger than 2G to be linked (which isn't
that uncommon with large projects such as WebKit), clang's driver checks
if the file exists but the file size doesn't fit in an off_t and stat(2)
fails with EOVERFLOW. Clang then says that the file doesn't exist instead
of passing it to the linker.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157891 91177308-0d34-0410-b5e6-96231b3b80d8