If we have two unique values for a v2i64 build vector, this will always result
in two vector loads if we expand using shuffles. Only one is necessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205231 91177308-0d34-0410-b5e6-96231b3b80d8
This is a more thorough fix for the issue than r203483. An IR pass will run
before NVPTX codegen to make sure there are no invalid symbol names that can't
be consumed by the ptxas assembler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205212 91177308-0d34-0410-b5e6-96231b3b80d8
This allows allows us to replace ISD::EXTRACT_ELEMENT, which is lowered
using shifts, with ISD::EXTRACT_VECTOR_ELT, which is a no-op.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205187 91177308-0d34-0410-b5e6-96231b3b80d8
When the loop vectorizer vectorizes code that uses the loop induction variable,
we often end up with IR like this:
%b1 = insertelement <2 x i32> undef, i32 %v, i32 0
%b2 = shufflevector <2 x i32> %b1, <2 x i32> undef, <2 x i32> zeroinitializer
%i = add <2 x i32> %b2, <i32 2, i32 3>
If the add in this example is not legal (as is the case on PPC with VSX), it
will be scalarized, and we'll end up with a number of extract_vector_elt nodes
with the vector shuffle as the input operand, and that vector shuffle is fed by
one or more build_vector nodes. By the time that vector operations are
expanded, visitEXTRACT_VECTOR_ELT will not create new extract_vector_elt by
looking through the vector shuffle (to make sure that no illegal operations are
created), and so the extract_vector_elt -> vector shuffle -> build_vector is
never simplified to an operand of the build vector.
By looking at build_vectors through a shuffle we fix this particular situation,
preventing a vector from being built, only to be deconstructed again (for the
scalarized add) -- an expensive proposition when this all needs to be done via
the stack. We probably want a more comprehensive fix here where we look back
recursively through any shuffles to any build_vectors or scalar_to_vectors,
etc. but that can come later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205179 91177308-0d34-0410-b5e6-96231b3b80d8
While reviewing r204163, I noticed that the MIPS16 test only checked for a .ent
directive and didn't actually check the code emitted. Fixed this and added a
check for llvm.bswap.i32 on MIPS64 at the same time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205177 91177308-0d34-0410-b5e6-96231b3b80d8
is not a pattern to lower this with clever instructions that zero the
register, so restrict the zero immediate legality special case to f64
and f32 (the only two sizes which fmov seems to directly support). Fixes
backend errors when building code such as libxml.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205161 91177308-0d34-0410-b5e6-96231b3b80d8
When expanding EXTRACT_VECTOR_ELT and EXTRACT_SUBVECTOR using
SelectionDAGLegalize::ExpandExtractFromVectorThroughStack, we store the entire
vector and then load the piece we want. This is fine in isolation, but
generating a new store (and corresponding stack slot) for each extraction ends
up producing code of poor quality. When we scalarize a vector operation (using
SelectionDAG::UnrollVectorOp for example) we generate one EXTRACT_VECTOR_ELT
for each element in the vector. This used to generate one stored copy of the
vector for each element in the vector. Now we search the uses of the vector for
a suitable store before generating a new one, which results in much more
efficient scalarization code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205153 91177308-0d34-0410-b5e6-96231b3b80d8
sitofp from v2i32 to v2f64 ends up generating a SIGN_EXTEND_INREG v2i64 node
(and similarly for v2i16 and v2i8). Even though there are no sign-extension (or
algebraic shifts) for v2i64 types, we can handle v2i32 sign extensions by
converting two and from v2i64. The small trick necessary here is to shift the
i32 elements into the right lanes before the i32 -> f64 step. This is because
of the big Endian nature of the system, we need the i32 portion in the high
word of the i64 elements.
For v2i16 and v2i8 we can do the same, but we first use the default Altivec
shift-based expansion from v2i16 or v2i8 to v2i32 (by casting to v4i32) and
then apply the above procedure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205146 91177308-0d34-0410-b5e6-96231b3b80d8
v2i64 is a legal type under VSX, however we don't have native vector
comparisons. We can handle eq/ne by casting it to an Altivec type, but
everything else must be expanded.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205106 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a second implementation of the AArch64 architecture to LLVM,
accessible in parallel via the "arm64" triple. The plan over the
coming weeks & months is to merge the two into a single backend,
during which time thorough code review should naturally occur.
Everything will be easier with the target in-tree though, hence this
commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205090 91177308-0d34-0410-b5e6-96231b3b80d8
We had stored both f64 values and v2f64, etc. values in the VSX registers. This
worked, but was suboptimal because we would always spill 16-byte values even
through we almost always had scalar 8-byte values. This resulted in an
increase in stack-size use, extra memory bandwidth, etc. To fix this, I've
added 64-bit subregisters of the Altivec registers, and combined those with the
existing scalar floating-point registers to form a class of VSX scalar
floating-point registers. The ABI code has also been enhanced to use this
register class and some other necessary improvements have been made.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205075 91177308-0d34-0410-b5e6-96231b3b80d8
Emit 32-bit register names instead of 64-bit register names if the target does
not have 64-bit general purpose registers.
<rdar://problem/14653996>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205067 91177308-0d34-0410-b5e6-96231b3b80d8
WinCOFF cannot form PC relative relocations to support absolute
MCValues. We should reenable this once WinCOFF supports emission of
IMAGE_REL_I386_REL32 relocations.
This fixes PR19272.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205058 91177308-0d34-0410-b5e6-96231b3b80d8
Not only did I invert the indices when I wrote the code, but I also did the
same thing when I wrote the regression test. Oops.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205046 91177308-0d34-0410-b5e6-96231b3b80d8
v2[fi]64 values need to be explicitly passed in VSX registers. This is because
the code in TRI that finds the minimal register class given a register and a
value type will assert if given an Altivec register and a non-Altivec type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205041 91177308-0d34-0410-b5e6-96231b3b80d8
As explained in r204976, because of how the allocation of VSX registers
interacts with the call-lowering code, we sometimes end up generating self VSX
copies. Specifically, things like this:
%VSL2<def> = COPY %F2, %VSL2<imp-use,kill>
(where %F2 is really a sub-register of %VSL2, and so this copy is a nop)
This adds a small cleanup pass to remove these prior to post-RA scheduling.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204980 91177308-0d34-0410-b5e6-96231b3b80d8
First, v2f64 vector extract had not been declared legal (and so the existing
patterns were not being used). Second, the patterns for that, and for
scalar_to_vector, should really be a regclass copy, not a subregister
operation, because the VSX registers directly hold both the vector and scalar data.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204971 91177308-0d34-0410-b5e6-96231b3b80d8
These operations need to be expanded during legalization so that isel does not
crash. In theory, we might be able to custom lower some of these. That,
however, would need to be follow-up work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204963 91177308-0d34-0410-b5e6-96231b3b80d8
This adds back r204781.
Original message:
Aliases are just another name for a position in a file. As such, the
regular symbol resolutions are not applied. For example, given
define void @my_func() {
ret void
}
@my_alias = alias weak void ()* @my_func
@my_alias2 = alias void ()* @my_alias
We produce without this patch:
.weak my_alias
my_alias = my_func
.globl my_alias2
my_alias2 = my_alias
That is, in the resulting ELF file my_alias, my_func and my_alias are
just 3 names pointing to offset 0 of .text. That is *not* the
semantics of IR linking. For example, linking in a
@my_alias = alias void ()* @other_func
would require the strong my_alias to override the weak one and
my_alias2 would end up pointing to other_func.
There is no way to represent that with aliases being just another
name, so the best solution seems to be to just disallow it, converting
a miscompile into an error.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204934 91177308-0d34-0410-b5e6-96231b3b80d8
I've not yet updated PPCTTI because I'm not sure what the actual relative cost
is compared to the aligned uses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204848 91177308-0d34-0410-b5e6-96231b3b80d8
These instructions have access to the complete VSX register file. In addition,
they "swap" the order of the elements so that element 0 (the scalar part) comes
first in memory and element 1 follows at a higher address.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204838 91177308-0d34-0410-b5e6-96231b3b80d8
In some cases it is possible for CGP to attempt to reuse a base address from
another basic block. In those cases we have to be sure that all the address
math was either done at the same bit width, or that none of it overflowed
before it was extended.
Patch by Louis Gerbarg <lgg@apple.com>
rdar://16307442
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204833 91177308-0d34-0410-b5e6-96231b3b80d8
> For functions where esi is used as base pointer, we would previously fall ba
> from lowering memcpy with "rep movs" because that clobbers esi.
>
> With this patch, we just store esi in another physical register, and restore
> it afterwards. This adds a little bit of register preassure, but the more
> efficient memcpy should be worth it.
>
> Differential Revision: http://llvm-reviews.chandlerc.com/D2968
This didn't work. I was ending up with code like this:
lea edi,[esi+38h]
mov ecx,0Fh
mov edx,esi
mov esi,ebx
rep movs dword ptr es:[edi],dword ptr [esi]
lea ecx,[esi+74h] <-- Ooops, we're now using esi before restoring it from edx.
add ebx,3Ch
mov esi,edx
I guess if we want to do this we need stronger glue or something, or doing the expansion
much later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204829 91177308-0d34-0410-b5e6-96231b3b80d8
v2i64 needs to be a legal VSX type because it is the SetCC result type from
v2f64 comparisons. We need to expand all non-arithmetic v2i64 operations.
This fixes the lowering for v2f64 VSELECT.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204828 91177308-0d34-0410-b5e6-96231b3b80d8
We've already got versions without the barriers, so this just adds IR-level
support for generating the new v8 ones.
rdar://problem/16227836
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204813 91177308-0d34-0410-b5e6-96231b3b80d8
Implementing the LLVM part of the call to __builtin___clear_cache
which translates into an intrinsic @llvm.clear_cache and is lowered
by each target, either to a call to __clear_cache or nothing at all
incase the caches are unified.
Updating LangRef and adding some tests for the implemented architectures.
Other archs will have to implement the method in case this builtin
has to be compiled for it, since the default behaviour is to bail
unimplemented.
A Clang patch is required for the builtin to be lowered into the
llvm intrinsic. This will be done next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204802 91177308-0d34-0410-b5e6-96231b3b80d8
With VSX there is a real vector select instruction, and so we should use it.
Note that VSELECT will still scalarize for v2f64 because the corresponding
SetCC result type (v2i64) is not currently a legal type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204801 91177308-0d34-0410-b5e6-96231b3b80d8