This provides an implementation of CFL alias analysis (including some
supporting data structures). Currently, we don't have any extremely fancy
features, sans some interprocedural analysis (i.e. no field sensitivity, etc.),
and we do best sitting behind BasicAA + TBAA. In such a configuration, we take
~0.6-0.8% of total compile time, and give ~7-8% NoAlias responses to queries
TBAA and BasicAA couldn't answer when bootstrapping LLVM. In testing this on
other projects, we've seen up to 10.5% of queries dropped by BasicAA+TBAA
answered with NoAlias by this algorithm.
Patch by George Burgess IV (with minor modifications by me -- mostly adapting
some BasicAA tests), thanks!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216970 91177308-0d34-0410-b5e6-96231b3b80d8
This commit adds scoped noalias metadata. The primary motivations for this
feature are:
1. To preserve noalias function attribute information when inlining
2. To provide the ability to model block-scope C99 restrict pointers
Neither of these two abilities are added here, only the necessary
infrastructure. In fact, there should be no change to existing functionality,
only the addition of new features. The logic that converts noalias function
parameters into this metadata during inlining will come in a follow-up commit.
What is added here is the ability to generally specify noalias memory-access
sets. Regarding the metadata, alias-analysis scopes are defined similar to TBAA
nodes:
!scope0 = metadata !{ metadata !"scope of foo()" }
!scope1 = metadata !{ metadata !"scope 1", metadata !scope0 }
!scope2 = metadata !{ metadata !"scope 2", metadata !scope0 }
!scope3 = metadata !{ metadata !"scope 2.1", metadata !scope2 }
!scope4 = metadata !{ metadata !"scope 2.2", metadata !scope2 }
Loads and stores can be tagged with an alias-analysis scope, and also, with a
noalias tag for a specific scope:
... = load %ptr1, !alias.scope !{ !scope1 }
... = load %ptr2, !alias.scope !{ !scope1, !scope2 }, !noalias !{ !scope1 }
When evaluating an aliasing query, if one of the instructions is associated
with an alias.scope id that is identical to the noalias scope associated with
the other instruction, or is a descendant (in the scope hierarchy) of the
noalias scope associated with the other instruction, then the two memory
accesses are assumed not to alias.
Note that is the first element of the scope metadata is a string, then it can
be combined accross functions and translation units. The string can be replaced
by a self-reference to create globally unqiue scope identifiers.
[Note: This overview is slightly stylized, since the metadata nodes really need
to just be numbers (!0 instead of !scope0), and the scope lists are also global
unnamed metadata.]
Existing noalias metadata in a callee is "cloned" for use by the inlined code.
This is necessary because the aliasing scopes are unique to each call site
(because of possible control dependencies on the aliasing properties). For
example, consider a function: foo(noalias a, noalias b) { *a = *b; } that gets
inlined into bar() { ... if (...) foo(a1, b1); ... if (...) foo(a2, b2); } --
now just because we know that a1 does not alias with b1 at the first call site,
and a2 does not alias with b2 at the second call site, we cannot let inlining
these functons have the metadata imply that a1 does not alias with b2.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213864 91177308-0d34-0410-b5e6-96231b3b80d8
string_ostream is a safe and efficient string builder that combines opaque
stack storage with a built-in ostream interface.
small_string_ostream<bytes> additionally permits an explicit stack storage size
other than the default 128 bytes to be provided. Beyond that, storage is
transferred to the heap.
This convenient class can be used in most places an
std::string+raw_string_ostream pair or SmallString<>+raw_svector_ostream pair
would previously have been used, in order to guarantee consistent access
without byte truncation.
The patch also converts much of LLVM to use the new facility. These changes
include several probable bug fixes for truncated output, a programming error
that's no longer possible with the new interface.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211749 91177308-0d34-0410-b5e6-96231b3b80d8
It includes a pass that rewrites all indirect calls to jumptable functions to pass through these tables.
This also adds backend support for generating the jump-instruction tables on ARM and X86.
Note that since the jumptable attribute creates a second function pointer for a
function, any function marked with jumptable must also be marked with unnamed_addr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210280 91177308-0d34-0410-b5e6-96231b3b80d8
This makes the 'verifyFunction' and 'verifyModule' functions totally
independent operations on the LLVM IR. It also cleans up their API a bit
by lifting the abort behavior into their clients and just using an
optional raw_ostream parameter to control printing.
The implementation of the verifier is now just an InstVisitor with no
multiple inheritance. It also is significantly more const-correct, and
hides the const violations internally. The two layers that force us to
break const correctness are building a DomTree and dispatching through
the InstVisitor.
A new VerifierPass is used to implement the legacy pass manager
interface in terms of the other pieces.
The error messages produced may be slightly different now, and we may
have slightly different short circuiting behavior with different usage
models of the verifier, but generally everything works equivalently and
this unblocks wiring the verifier up to the new pass manager.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199569 91177308-0d34-0410-b5e6-96231b3b80d8
directory. These passes are already defined in the IR library, and it
doesn't make any sense to have the headers in Analysis.
Long term, I think there is going to be a much better way to divide
these matters. The dominators code should be fully separated into the
abstract graph algorithm and have that put in Support where it becomes
obvious that evn Clang's CFGBlock's can use it. Then the verifier can
manually construct dominance information from the Support-driven
interface while the Analysis library can provide a pass which both
caches, reconstructs, and supports a nice update API.
But those are very long term, and so I don't want to leave the really
confusing structure until that day arrives.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199082 91177308-0d34-0410-b5e6-96231b3b80d8
subsequent changes are easier to review. About to fix some layering
issues, and wanted to separate out the necessary churn.
Also comment and sink the include of "Windows.h" in three .inc files to
match the usage in Memory.inc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198685 91177308-0d34-0410-b5e6-96231b3b80d8
infrastructure.
This was essentially work toward PGO based on a design that had several
flaws, partially dating from a time when LLVM had a different
architecture, and with an effort to modernize it abandoned without being
completed. Since then, it has bitrotted for several years further. The
result is nearly unusable, and isn't helping any of the modern PGO
efforts. Instead, it is getting in the way, adding confusion about PGO
in LLVM and distracting everyone with maintenance on essentially dead
code. Removing it paves the way for modern efforts around PGO.
Among other effects, this removes the last of the runtime libraries from
LLVM. Those are being developed in the separate 'compiler-rt' project
now, with somewhat different licensing specifically more approriate for
runtimes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191835 91177308-0d34-0410-b5e6-96231b3b80d8
the things, and renames it to CBindingWrapping.h. I also moved
CBindingWrapping.h into Support/.
This new file just contains the macros for defining different wrap/unwrap
methods.
The calls to those macros, as well as any custom wrap/unwrap definitions
(like for array of Values for example), are put into corresponding C++
headers.
Doing this required some #include surgery, since some .cpp files relied
on the fact that including Wrap.h implicitly caused the inclusion of a
bunch of other things.
This also now means that the C++ headers will include their corresponding
C API headers; for example Value.h must include llvm-c/Core.h. I think
this is harmless, since the C API headers contain just external function
declarations and some C types, so I don't believe there should be any
nasty dependency issues here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180881 91177308-0d34-0410-b5e6-96231b3b80d8
This pass hasn't been touched in two years & would fail with assertions against
the current debug info metadata format (the only test case for it still uses a
many-versions old debug info metadata format)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176707 91177308-0d34-0410-b5e6-96231b3b80d8
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
It was unmaintained and not much more than a stub. The new DependenceAnalysis
pass is both more general and complete.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166810 91177308-0d34-0410-b5e6-96231b3b80d8
Patch from Preston Briggs <preston.briggs@gmail.com>.
This is an updated version of the dependence-analysis patch, including an MIV
test based on Banerjee's inequalities.
It's a fairly complete implementation of the paper
Practical Dependence Testing
Gina Goff, Ken Kennedy, and Chau-Wen Tseng
PLDI 1991
It cannot yet propagate constraints between coupled RDIV subscripts (discussed
in Section 5.3.2 of the paper).
It's organized as a FunctionPass with a single entry point that supports testing
for dependence between two instructions in a function. If there's no dependence,
it returns null. If there's a dependence, it returns a pointer to a Dependence
which can be queried about details (what kind of dependence, is it loop
independent, direction and distance vector entries, etc). I haven't included
every imaginable feature, but there's a good selection that should be adequate
for supporting many loop transformations. Of course, it can be extended as
necessary.
Included in the patch file are many test cases, commented with C code showing
the loops and array references.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165708 91177308-0d34-0410-b5e6-96231b3b80d8
This patch implements ProfileDataLoader which loads profile data generated by
-insert-edge-profiling and updates branch weight metadata accordingly.
Patch by Alastair Murray.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162799 91177308-0d34-0410-b5e6-96231b3b80d8
BranchProbabilityInfo provides an interface for IR passes to query the
likelihood that control follows a CFG edge. This patch provides an
initial implementation of static branch predication that will populate
BranchProbabilityInfo for branches with no external profile
information using very simple heuristics. It currently isn't hooked up
to any external profile data, so static prediction does all the work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132613 91177308-0d34-0410-b5e6-96231b3b80d8
Modified patch by Adam Preuss.
This builds on the existing framework for block tracing, edge profiling and optimal edge profiling.
See -help-hidden for new flags.
For documentation, see the technical report "Implementation of Path Profiling..." in llvm.org/pubs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124515 91177308-0d34-0410-b5e6-96231b3b80d8