candidate set for subsequent inlining, try to simplify the arguments to
the inner call site now that inlining has been performed.
The goal here is to propagate and fold constants through deeply nested
call chains. Without doing this, we loose the inliner bonus that should
be applied because the arguments don't match the exact pattern the cost
estimator uses.
Reviewed on IRC by Benjamin Kramer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152556 91177308-0d34-0410-b5e6-96231b3b80d8
introduced. Specifically, there are cost reductions for all
constant-operand icmp instructions against an alloca, regardless of
whether the alloca will in fact be elligible for SROA. That means we
don't want to abort the icmp reduction computation when we abort the
SROA reduction computation. That in turn frees us from the need to keep
a separate worklist and defer the ICmp calculations.
Use this new-found freedom and some judicious function boundaries to
factor the innards of computing the cost factor of any given instruction
out of the loop over the instructions and into static helper functions.
This greatly simplifies the code, and hopefully makes it more clear what
is happening here.
Reviewed by Eric Christopher. There is some concern that we'd like to
ensure this doesn't get out of hand, and I plan to benchmark the effects
of this change over the next few days along with some further fixes to
the inline cost.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152368 91177308-0d34-0410-b5e6-96231b3b80d8
savings from a pointer argument becoming an alloca. Sometimes callees will even
compare a pointer to null and then branch to an otherwise unreachable block!
Detect these cases and compute the number of saved instructions, instead of
bailing out and reporting no savings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148941 91177308-0d34-0410-b5e6-96231b3b80d8
can't handle. Also don't produce non-zero results for things which won't be
transformed by SROA at all just because we saw the loads/stores before we saw
the use of the address.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148536 91177308-0d34-0410-b5e6-96231b3b80d8
for pre-2.9 bitcode files. We keep x86 unaligned loads, movnt, crc32, and the
target indep prefetch change.
As usual, updating the testsuite is a PITA.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@133337 91177308-0d34-0410-b5e6-96231b3b80d8
pad, separating the exception and selector calls from the new lpad. Teaching
it not to do that, or to properly adjust the CFG afterwards, is out of
scope because it would require the other edges to the landing pad to be split
as well (effectively). Instead, just recover from the most likely cases
during inlining. The best long-term solution is to change the exception
representation and commit to either requiring or not requiring the more
complex edge-splitting logic; this is just a shorter-term hack.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132799 91177308-0d34-0410-b5e6-96231b3b80d8
transformed by the inliner into a branch to the enclosing landing pad
(when inlined through an invoke). If not so optimized, it is lowered
DWARF EH preparation into a call to _Unwind_Resume (or _Unwind_SjLj_Resume
as appropriate). Its chief advantage is that it takes both the
exception value and the selector value as arguments, meaning that there
is zero effort in recovering these; however, the frontend is required
to pass these down, which is not actually particularly difficult.
Also document the behavior of landing pads a bit better, and make it
clearer that it's okay that personality functions don't always land at
landing pads. This is just a fact of life. Don't write optimizations that
rely on pushing things over an unwind edge.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132253 91177308-0d34-0410-b5e6-96231b3b80d8
- the selector for the landing pad must provide all available information
about the handlers, filters, and cleanups within that landing pad
- calls to _Unwind_Resume must be converted to branches to the enclosing
lpad so as to avoid re-entering the unwinder when the lpad claimed it
was going to handle the exception in some way
This is quite specific to libUnwind-based unwinding. In an effort to not
interfere too badly with other unwinders, and with existing hacks in frontends,
this only triggers on _Unwind_Resume (not _Unwind_Resume_or_Rethrow) and does
nothing with selectors if it cannot find a selector call for either lpad.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132200 91177308-0d34-0410-b5e6-96231b3b80d8
argument. The generated alloca has to have at least the alignment of the
byval, if not, the client may be making assumptions that the new alloca won't
satisfy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122234 91177308-0d34-0410-b5e6-96231b3b80d8
does normal initialization and normal chaining. Change the default
AliasAnalysis implementation to NoAlias.
Update StandardCompileOpts.h and friends to explicitly request
BasicAliasAnalysis.
Update tests to explicitly request -basicaa.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116720 91177308-0d34-0410-b5e6-96231b3b80d8
the newly created allocas may be used by inlined calls, so these
need to have their tail call flags cleared. Fixes PR7272.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105255 91177308-0d34-0410-b5e6-96231b3b80d8
halting analysis, it is illegal to delete a call to a read-only function.
The correct solution is almost certainly to add a "must halt" attribute and
only allow deletions in its presence.
XFAIL the relevant testcase for now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102831 91177308-0d34-0410-b5e6-96231b3b80d8
if an indirect call site was removed and a direct one was added, not
just if an indirect call site was modified to be direct.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102830 91177308-0d34-0410-b5e6-96231b3b80d8
that can have a big effect :). The first is to enable the
iterative SCC passmanager juice that kicks in when the
scc passmgr detects that a function pass has devirtualized
a call. In this case, it will rerun all the passes it
manages on the SCC, up to the iteration count limit (4). This
is useful because a function pass may devirualize a call, and
we want the inliner to inline it, or pruneeh to infer stuff
about it, etc.
The second patch is to add *all* call sites to the
DevirtualizedCalls list the inliner uses. This list is
about to get renamed, but the jist of this is that the
inliner now reconsiders *all* inlined call sites as candidates
for further inlining. The intuition is this that in cases
like this:
f() { g(1); } g(int x) { h(x); }
We analyze this bottom up, and may decide that it isn't
profitable to inline H into G. Next step, we decide that it is
profitable to inline G into F, and do so, which means that F
now calls H. Even though the call from G -> H may not have been
profitable to inline, the call from F -> H may be (in this case
because a constant allows folding etc).
In my spot checks, this doesn't have a big impact on code. For
example, the LLC output for 252.eon grew from 0.02% (from
317252 to 317308) and 176.gcc actually shrunk by .3% (from 1525612
to 1520964 bytes). 252.eon never iterated in the SCC Passmgr,
176.gcc iterated at most 1 time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102823 91177308-0d34-0410-b5e6-96231b3b80d8
that appear due to inlining a callee as candidates for
futher inlining, but a recent patch made it do this if
those call sites were indirect and became direct.
Unfortunately, in bizarre cases (see testcase) doing this
can cause us to infinitely inline mutually recursive
functions into callers not in the cycle. Fix this by
keeping track of the inline history from which callsite
inline candidates got inlined from.
This shouldn't affect any "real world" code, but is required
for a follow on patch that is coming up next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102822 91177308-0d34-0410-b5e6-96231b3b80d8
were still inlining self-recursive functions into other functions.
Inlining a recursive function into itself has the potential to
reduce recursion depth by a factor of 2, inlining a recursive
function into something else reduces recursion depth by exactly
1. Since inlining a recursive function into something else is a
weird form of loop peeling, turn this off.
The deleted testcase was added by Dale in r62107, since then
we're leaning towards not inlining recursive stuff ever. In any
case, if we like inlining recursive stuff, it should be done
within the recursive function itself to get the algorithm
recursion depth win.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102798 91177308-0d34-0410-b5e6-96231b3b80d8
that appear in the SCC as a result of inlining as candidates
for inlining. Change this so that it *does* consider call
sites that change from being indirect to being direct as a
result of inlining. This allows it to completely
"devirtualize" the testcase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102146 91177308-0d34-0410-b5e6-96231b3b80d8
Fix RefreshCallGraph to use CGN->replaceCallEdge instead of hand
rolling its own loop. replaceCallEdge properly maintains the
reference counts of the nodes, fixing a crash exposed by the
iterative callgraph stuff.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102120 91177308-0d34-0410-b5e6-96231b3b80d8
we have RefreshCallGraph detect when a function pass devirtualizes
a call, and have CGSCCPassMgr iterate (up to a count) when this
happens. This allows (in the example) GVN to devirtualize the
call in foo, then the inliner to inline it away.
This is not currently enabled because I haven't done any analysis
on the (potentially substantial) code size or performance impact of
doing this, and guess what, it exposes callgraph updating bugs in
various passes. This is progress though, and you can play with it
by passing -max-cg-scc-iterations=5 to opt.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101973 91177308-0d34-0410-b5e6-96231b3b80d8
recursive callsites, inlining can reduce the number of calls by
exponential factors, as it does in
MultiSource/Benchmarks/Olden/treeadd. More involved heuristics
will be needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101969 91177308-0d34-0410-b5e6-96231b3b80d8