Before this change, the backend was unable to fold a build_vector dag
node with UNDEF operands into a single horizontal add/sub.
This patch teaches how to combine a build_vector with UNDEF operands into a
horizontal add/sub when possible. The algorithm conservatively avoids to combine
a build_vector with only a single non-UNDEF operand.
Added test haddsub-undef.ll to verify that we correctly fold horizontal binop
even in the presence of UNDEFs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211265 91177308-0d34-0410-b5e6-96231b3b80d8
* Find factorization opportunities using identity values.
* Find factorization opportunities by treating shl(X, C) as mul (X, shl(C))
* Keep NSW flag while simplifying instruction using factorization.
This fixes PR19263.
Differential Revision: http://reviews.llvm.org/D3799
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211261 91177308-0d34-0410-b5e6-96231b3b80d8
These errors are strictly unrecoverable and indicate serious issues such as
conflicting option names or an incorrectly linked LLVM distribution.
With this change, the errors actually get detected so tests don't pass
silently.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211260 91177308-0d34-0410-b5e6-96231b3b80d8
InstCombineMulDivRem has:
// Canonicalize (X+C1)*CI -> X*CI+C1*CI.
InstCombineAddSub has:
// W*X + Y*Z --> W * (X+Z) iff W == Y
These two transforms could fight with each other if C1*CI would not fold
away to something simpler than a ConstantExpr mul.
The InstCombineMulDivRem transform only acted on ConstantInts until
r199602 when it was changed to operate on all Constants in order to
let it fire on ConstantVectors.
To fix this, make this transform more careful by checking to see if we
actually folded away C1*CI.
This fixes PR20079.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211258 91177308-0d34-0410-b5e6-96231b3b80d8
used by all of the MC level tools and codegen. Fix up all uses
in the compiler to use this and set it on the context accordingly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211257 91177308-0d34-0410-b5e6-96231b3b80d8
We would get confused by '@' characters in symbol names, we would
mistake the text following them for the variant kind.
When an identifier a string, the variant kind will never show up inside
of it. Instead, check to see if there is a variant following the
string.
This fixes PR19965.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211249 91177308-0d34-0410-b5e6-96231b3b80d8
These will be used for custom lowering and for library
implementations of various math functions, so it's useful
to expose these as builtins.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211247 91177308-0d34-0410-b5e6-96231b3b80d8
This required untangling a mess of headers that included around.
This a recommit of r210953 with a fix for the removed accessor
for JITInfo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211233 91177308-0d34-0410-b5e6-96231b3b80d8
fat files containing archives.
Also fix a bug in MachOUniversalBinary::ObjectForArch::ObjectForArch()
where it needed a >= when comparing the Index with the number of
objects in a fat file. As the index starts at 0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211230 91177308-0d34-0410-b5e6-96231b3b80d8
The difference from rint isn't really relevant here,
so treat them as equivalent. OpenCL doesn't have nearbyint,
so this is sort of pointless other than for completeness.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211229 91177308-0d34-0410-b5e6-96231b3b80d8
This contains all the previous patches + getlod support on top of it.
It doesn't use SDNodes anymore, so it's quite small.
It also adds v16i8 to SReg_128, which is used for the sampler descriptor.
Reviewed-by: Tom Stellard
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211228 91177308-0d34-0410-b5e6-96231b3b80d8
This change has a bit of a trickle down effect due to the fact that
there are a number of derived implementations of ExecutionEngine,
and that the mutex is not tightly encapsulated so is used by other
classes directly.
Reviewed by: rnk
Differential Revision: http://reviews.llvm.org/D4196
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211214 91177308-0d34-0410-b5e6-96231b3b80d8
LLVMGetBitcodeModuleInContext should not take ownership on error. I will
try to localize this odd api requirement, but this should get the bots green.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211213 91177308-0d34-0410-b5e6-96231b3b80d8
The main point of this class is to provide a cheap object interface to a bitcode
file, so it has to be as lazy as possible.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211207 91177308-0d34-0410-b5e6-96231b3b80d8
We do have use cases for the bitcode reader owning the buffer or not, but we
always know which one we have when we construct it.
It might be possible to simplify this further, but this is a step in the
right direction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211205 91177308-0d34-0410-b5e6-96231b3b80d8
When emitting optimization remarks, we test for the presence of
instruction locations by testing for a valid llvm.dbg.cu annotation.
This is slightly inefficient because we can simply ask whether the
debug location we have is known or not.
Additionally, if my current plan works, I will need to remove the
llvm.dbg.cu annotation from the IL (or prevent it from being generated)
when -Rpass is used without -g. In those cases, we'll want to generate
line tables but we will want to prevent code generation from emitting
DWARF code for them.
Tested on x86_64.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211204 91177308-0d34-0410-b5e6-96231b3b80d8
When looking at the 64-bit SVR4 indirect call sequence, I noticed
an unnecessary load of r12. And indeed the code says:
// R12 must contain the address of an indirect callee.
But this is not correct; in the 64-bit SVR4 (ELFv1) ABI, there is
no need to load r12 at this point. It seems this code and comment
is a remnant of code originally shared with the Darwin ABI ...
This patch simply removes the unnecessary load.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211203 91177308-0d34-0410-b5e6-96231b3b80d8
ARMTargetStreamer implements ConstantPool and AssmeblerConstantPools
to keep track of assembler-generated constant pools that are used for
ldr-pseudo.
When implementing ldr-pseudo for AArch64, these two classes can be reused.
So this patch factors them out from ARM target to the general MC lib.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211198 91177308-0d34-0410-b5e6-96231b3b80d8
During an indirect function call sequence on the 64-bit SVR4 ABI,
generate code must load and then restore the TOC register.
This does not use a regular LOAD instruction since the TOC
register r2 is marked as reserved. Instead, the are two
special instruction patterns:
let RST = 2, DS = 2 in
def LDinto_toc: DSForm_1a<58, 0, (outs), (ins g8rc:$reg),
"ld 2, 8($reg)", IIC_LdStLD,
[(PPCload_toc i64:$reg)]>, isPPC64;
let RST = 2, DS = 10, RA = 1 in
def LDtoc_restore : DSForm_1a<58, 0, (outs), (ins),
"ld 2, 40(1)", IIC_LdStLD,
[(PPCtoc_restore)]>, isPPC64;
Note that these not only restrict the destination of the
load to r2, but they also restrict the *source* of the
load to particular address combinations. The latter is
a problem when we want to support the ELFv2 ABI, since
there the TOC save slot is no longer at 40(1).
This patch replaces those two instructions with a single
instruction pattern that only hard-codes r2 as destination,
but supports generic addresses as source. This will allow
supporting the ELFv2 ABI, and also helps generate more
efficient code for calls to absolute addresses (allowing
simplification of the ppc64-calls.ll test case).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211193 91177308-0d34-0410-b5e6-96231b3b80d8
As requested by Hal Finkel, this adds back a test for calls to
a known-constant function pointer value, and verifies that the
64-bit SVR4 indirect function call sequence is used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211190 91177308-0d34-0410-b5e6-96231b3b80d8