Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230794 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Until now, we did this (among other things) based on whether or not the
target was Windows. This is clearly wrong, not just for Win64 ABI functions
on non-Windows, but for System V ABI functions on Windows, too. In this
change, we make this decision based on the ABI the calling convention
specifies instead.
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7953
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230793 91177308-0d34-0410-b5e6-96231b3b80d8
When using Altivec, we can use vector loads and stores for aligned memcpy and
friends. Starting with the P7 and VXS, we have reasonable unaligned vector
stores. Starting with the P8, we have fast unaligned loads too.
For QPX, we use vector loads are stores, but only for aligned memory accesses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230788 91177308-0d34-0410-b5e6-96231b3b80d8
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
This work is currently being rethought along different lines and
if this work is needed it can be resurrected out of svn. Remove it
for now as no current work in ongoing on it and it's unused. Verified
with the authors before removal.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230780 91177308-0d34-0410-b5e6-96231b3b80d8
In the review for r230567, it was pointed out we should really test
the lib/Object part of that change. This does so using llvm-readobj.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230779 91177308-0d34-0410-b5e6-96231b3b80d8
It didn't seem worth leaving behind a guideline to use '= delete' to
make a class uncopyable. That's a well known C++ design pattern.
Reported on the mailing list and in PR22724.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230776 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Currently fast-isel-abort will only abort for regular instructions,
and just warn for function calls, terminators, function arguments.
There is already fast-isel-abort-args but nothing for calls and
terminators.
This change turns the fast-isel-abort options into an integer option,
so that multiple levels of strictness can be defined.
This will help no being surprised when the "abort" option indeed does
not abort, and enables the possibility to write test that verifies
that no intrinsics are forgotten by fast-isel.
Reviewers: resistor, echristo
Subscribers: jfb, llvm-commits
Differential Revision: http://reviews.llvm.org/D7941
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230775 91177308-0d34-0410-b5e6-96231b3b80d8
This removes a bit of duplicated code and more importantly, remembers the
labels so that they don't need to be looked up by name.
This in turn allows for any name to be used and avoids a crash if the name
we wanted was already taken.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230772 91177308-0d34-0410-b5e6-96231b3b80d8
The keys of the map are unique by pointer address, so there's no need
to use the llvm::less comparator. This allows us to use DenseMap
instead, which reduces tblgen time by 20% on my stress test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230769 91177308-0d34-0410-b5e6-96231b3b80d8
vectors. This lets us fix the rest of the v16 lowering problems when
pshufb is clearly better.
We might still be able to improve some of the lowerings by enabling the
other combine-based rewriting to fire for non-128-bit vectors, but this
at least should remove any regressions from using the fancy v16i16
lowering strategy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230753 91177308-0d34-0410-b5e6-96231b3b80d8
repeated 128-bit lane shuffles of wider vector types and use it to lower
256-bit v16i16 vector shuffles where applicable.
This should let us perfectly lowering the pattern of pshuflw and pshufhw
even for AVX2 256-bit patterns.
I've not added AVX-512 support, but it should be trivial for someone
working on that to wire up.
Note that currently this generates bad, long shuffle chains because we
don't combine 256-bit target shuffles. The subsequent patches will fix
that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230751 91177308-0d34-0410-b5e6-96231b3b80d8
by mirroring v8i16 test cases across both 128-bit lanes. This should
highlight problems where we aren't correctly using 128-bit shuffles to
implement things.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230750 91177308-0d34-0410-b5e6-96231b3b80d8
going back through the entire vector shuffle lowering.
This is an important step to being able to re-use this logic.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230743 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
We identify the cases where the operand to an ADDE node is a constant
zero. In such cases, we can avoid generating an extra ADDu instruction
disguised as an identity move alias (ie. addu $r, $r, 0 --> move $r, $r).
Reviewers: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7906
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230742 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, the ASan executables built with -O0 are unnecessarily slow.
The main reason is that ASan instrumentation pass inserts redundant
checks around promotable allocas. These allocas do not get instrumented
under -O1 because they get converted to virtual registered by mem2reg.
With this patch, ASan instrumentation pass will only instrument non
promotable allocas, giving us a speedup of 39% on a collection of
benchmarks with -O0. (There is no measurable speedup at -O1.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230724 91177308-0d34-0410-b5e6-96231b3b80d8
AnalysisResult::getResultImpl reuses an iterator into a DenseMap after
inserting elements into it. This change adds code to recompute the
iterator before the second use.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230718 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This change causes us to actually save non-volatile registers in a Win64
ABI function that calls a System V ABI function, and vice-versa.
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7919
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230714 91177308-0d34-0410-b5e6-96231b3b80d8
uses of TM->getSubtargetImpl and propagate to all calls.
This could be a debugging regression in places where we had a
TargetMachine and/or MachineFunction but don't have it as part
of the MachineInstr. Fixing this would require passing a
MachineFunction/Function down through the print operator, but
none of the existing uses in tree seem to do this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230710 91177308-0d34-0410-b5e6-96231b3b80d8
Function pointers were not correctly handled by the dumper, and
they would print as "* name". They now print as
"int (__cdecl *name)(int arg1, int arg2)" as they should.
Also, doubles were being printed as floats. This fixes that bug
as well, and adds tests for all builtin types. as well as a test
for function pointers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230703 91177308-0d34-0410-b5e6-96231b3b80d8
a lookup, pass that in rather than use a naked call to getSubtargetImpl.
This involved passing down and around either a TargetMachine or
TargetRegisterInfo. Update all callers/definitions around the targets
and SelectionDAG.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230699 91177308-0d34-0410-b5e6-96231b3b80d8
blend as legal.
We made the same mistake in two different places. Whenever we are custom
lowering a v32i8 blend we need to check whether we are custom lowering
it only for constant conditions that can be shuffled, or whether we
actually have AVX2 and full dynamic blending support on bytes. Both are
fixed, with comments added to make it clear what is going on and a new
test case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230695 91177308-0d34-0410-b5e6-96231b3b80d8
dynamic blends.
This makes it much more clear what is going on. The case we're handling
is that of dynamic conditions, and we're bailing when the nature of the
vector types and subtarget preclude lowering the dynamic condition
vselect as an actual blend.
No functionality changed here, but this will make a subsequent bug-fix
to this code much more clear.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230690 91177308-0d34-0410-b5e6-96231b3b80d8
change functionality, but makes it more clear that the dynamic case and
the shuffle case don't overlap in any interesting way.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230689 91177308-0d34-0410-b5e6-96231b3b80d8