Move the Windows unwind information emitter into a separate header. This is not
related to DWARF based emission. NFC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216894 91177308-0d34-0410-b5e6-96231b3b80d8
Rename the routines to reflect the reality that they are more related to call
frame information than to Win64 EH. Although EH is implemented in an intertwined
manner by augmenting with an exception handler and an associated parameter, the
majority of these routines emit information required to unwind the frames. This
also helps identify that these routines are generic for most windows platforms
(they apply equally to nearly all architectures except x86) although the
encoding of the information is architecture dependent.
Unwinding data is emitted via EmitWinCFI* and exception handling information via
EmitWinEH*.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211994 91177308-0d34-0410-b5e6-96231b3b80d8
--
This patch enables LLVM to emit Win64-native unwind info rather than
DWARF CFI. It handles all corner cases (I hope), including stack
realignment.
Because the unwind info is not flexible enough to describe stack frames
with a gap of unknown size in the middle, such as the one caused by
stack realignment, I modified register spilling code to place all spills
into the fixed frame slots, so that they can be accessed relative to the
frame pointer.
Patch by Vadim Chugunov!
Reviewed By: rnk
Differential Revision: http://reviews.llvm.org/D4081
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211691 91177308-0d34-0410-b5e6-96231b3b80d8
This patch enables LLVM to emit Win64-native unwind info rather than
DWARF CFI. It handles all corner cases (I hope), including stack
realignment.
Because the unwind info is not flexible enough to describe stack frames
with a gap of unknown size in the middle, such as the one caused by
stack realignment, I modified register spilling code to place all spills
into the fixed frame slots, so that they can be accessed relative to the
frame pointer.
Patch by Vadim Chugunov!
Reviewed By: rnk
Differential Revision: http://reviews.llvm.org/D4081
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211399 91177308-0d34-0410-b5e6-96231b3b80d8
DwarfException served as a base class for exception handling directive emission.
However, this is also used by other exception models (e.g. Win64EH). Rename
this class to EHStreamer and split it out of DwarfException.h. NFC.
Use the opportunity to fix up some of the documentation comments to match
current LLVM style. Also rename some functions to conform better with current
LLVM coding style.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210622 91177308-0d34-0410-b5e6-96231b3b80d8
r201608 made llvm corretly handle private globals with MachO. r201622 fixed
a bug in it and r201624 and r201625 were changes for using private linkage,
assuming that llvm would do the right thing.
They all got reverted because r201608 introduced a crash in LTO. This patch
includes a fix for that. The issue was that TargetLoweringObjectFile now has
to be initialized before we can mangle names of private globals. This is
trivially true during the normal codegen pipeline (the asm printer does it),
but LTO has to do it manually.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201700 91177308-0d34-0410-b5e6-96231b3b80d8
The IR
@foo = private constant i32 42
is valid, but before this patch we would produce an invalid MachO from it. It
was invalid because it would use an L label in a section where the liker needs
the labels in order to atomize it.
One way of fixing it would be to just reject this IR in the backend, but that
would not be very front end friendly.
What this patch does is use an 'l' prefix in sections that we know the linker
requires symbols for atomizing them. This allows frontends to just use
private and not worry about which sections they go to or how the linker handles
them.
One small issue with this strategy is that now a symbol name depends on the
section, which is not available before codegen. This is not a problem in
practice. The reason is that it only happens with private linkage, which will
be ignored by the non codegen users (llvm-nm and llvm-ar).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201608 91177308-0d34-0410-b5e6-96231b3b80d8
It is never null and it is not used in casts, so there is no reason to use a
pointer. This matches how we pass TM.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201025 91177308-0d34-0410-b5e6-96231b3b80d8
Obviously the personality function should be emitted as language handler
instead of the hard coded _GCC_specific_handler. The language specific
data must be placed after the unwind information therefore it must not
be emitted into a separate section.
Reviewed by Charles Davis and Nico Rieck.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185761 91177308-0d34-0410-b5e6-96231b3b80d8
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
handler's data area starts with a 4-byte reference to the personality
function, followed by the DWARF LSDA.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132302 91177308-0d34-0410-b5e6-96231b3b80d8
handler.
At this moment, only GCC-style exceptions are supported. Other kinds
of exceptions, including "traditional" SEH and Microsoft Visual C++ exceptions,
need more work--and an compiler exception model that isn't specific to
GCC-style exceptions!
In particular, I imagine that it would be possible to mix "traditional" SEH
with GCC-style EH or Microsoft C++ EH. Currently LLVM has no way (beyond some
target-specific defaults and whole-module compiler switches) of knowing which
scheme to use when.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132283 91177308-0d34-0410-b5e6-96231b3b80d8
the Win64 EH mechanism to implement GCC-style exceptions. LLVM supports
hardly anything else at this point!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132234 91177308-0d34-0410-b5e6-96231b3b80d8