This reverts commit r221836.
The tests are asserting on some buildbots. This also reverts the
test part of r221837 as it relies on dwarfdump dumping the
accelerator tables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221842 91177308-0d34-0410-b5e6-96231b3b80d8
This avoids an issue where AtEndOfStream mistakenly returns true at the /start/ of
a stream.
(In the rare case that the size is known and actually 0, the slow path will still
handle it correctly.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221840 91177308-0d34-0410-b5e6-96231b3b80d8
The class used for the dump only allows to dump for the moment, but
it can (and will) be easily extended to support search also.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221836 91177308-0d34-0410-b5e6-96231b3b80d8
Currently FormValues are only used for attributes of DIEs and thus
uers always have a CU lying around when calling into the FormValue
API.
Accelerator tables encode their information using the same Forms
as the attributes, thus it is natural to use DWARFFormValue to
extract/dump them. There is no CU in that case though. Allow the
API to be called with a null CU arguemnt by making the RelocMap
lookup conditional on the CU pointer validity. And document this
new behvior in the header. (Test coverage for this use of the API
comes in the DwarfAccelTable support patch)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221835 91177308-0d34-0410-b5e6-96231b3b80d8
One of them (__memcpy_chk) was already there, the others were checked
by comparing function names.
Note that the fortified libfuncs are now part of TLI, but are always
available, because they aren't generated, only optimized into the
non-checking versions.
Differential Revision: http://reviews.llvm.org/D6179
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221817 91177308-0d34-0410-b5e6-96231b3b80d8
Returning more information will allow BitstreamReader to be simplified a bit
and changed to read 64 bits at a time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221794 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Large-model was added first. With the addition of support for multiple PIC
models in LLVM, now add small-model PIC for 32-bit PowerPC, SysV4 ABI. This
generates more optimal code, for shared libraries with less than about 16380
data objects.
Test Plan: Test cases added or updated
Reviewers: joerg, hfinkel
Reviewed By: hfinkel
Subscribers: jholewinski, mcrosier, emaste, llvm-commits
Differential Revision: http://reviews.llvm.org/D5399
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221791 91177308-0d34-0410-b5e6-96231b3b80d8
This patch enables the vec_vsx_ld and vec_vsx_st intrinsics for
PowerPC, which provide programmer access to the lxvd2x, lxvw4x,
stxvd2x, and stxvw4x instructions.
New LLVM intrinsics are provided to represent these four instructions
in IntrinsicsPowerPC.td. These are patterned after the similar
intrinsics for lvx and stvx (Altivec). In PPCInstrVSX.td, these
intrinsics are tied to the code gen patterns, with additional patterns
to allow plain vanilla loads and stores to still generate these
instructions.
At -O1 and higher the intrinsics are immediately converted to loads
and stores in InstCombineCalls.cpp. This will open up more
optimization opportunities while still allowing the correct
instructions to be generated. (Similar code exists for aligned
Altivec loads and stores.)
The new intrinsics are added to the code that checks for consecutive
loads and stores in PPCISelLowering.cpp, as well as to
PPCTargetLowering::getTgtMemIntrinsic().
There's a new test to verify the correct instructions are generated.
The loads and stores tend to be reordered, so the test just counts
their number. It runs at -O2, as it's not very effective to test this
at -O0, when many unnecessary loads and stores are generated.
I ended up having to modify vsx-fma-m.ll. It turns out this test case
is slightly unreliable, but I don't know a good way to prevent
problems with it. The xvmaddmdp instructions read and write the same
register, which is one of the multiplicands. Commutativity allows
either to be chosen. If the FMAs are reordered differently than
expected by the test, the register assignment can be different as a
result. Hopefully this doesn't change often.
There is a companion patch for Clang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221767 91177308-0d34-0410-b5e6-96231b3b80d8
Every MemoryObject is a StreamableMemoryObject since the removal of
StringRefMemoryObject, so just merge the two.
I will clean up the MemoryObject interface in the upcoming commits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221766 91177308-0d34-0410-b5e6-96231b3b80d8
A subtle bug was found where attempting to copy a non-const function_ref
lvalue would actually invoke the generic forwarding constructor (as it
was a closer match - being T& rather than the const T& of the implicit
copy constructor). In the particular case this lead to a dangling
function_ref member (since it had referenced the function_ref passed by
value to its ctor, rather than the outer function_ref that was still
alive)
SFINAE the converting constructor to not be considered if the copy
constructor is available and demonstrate that this causes the copy to
refer to the original functor, not to the function_ref it was copied
from. (without the code change, the test would fail as Y would be
referencing X and Y() would see the result of the mutation to X, ie: 2)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221753 91177308-0d34-0410-b5e6-96231b3b80d8
With this patch MCDisassembler::getInstruction takes an ArrayRef<uint8_t>
instead of a MemoryObject.
Even on X86 there is a maximum size an instruction can have. Given
that, it seems way simpler and more efficient to just pass an ArrayRef
to the disassembler instead of a MemoryObject and have it do a virtual
call every time it wants some extra bytes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221751 91177308-0d34-0410-b5e6-96231b3b80d8
Add API for specifying which `LLVMContext` each `lto_module_t` and
`lto_code_gen_t` is in.
In particular, this enables the following flow:
for (auto &File : Files) {
lto_module_t M = lto_module_create_in_local_context(File...);
querySymbols(M);
lto_module_dispose(M);
}
lto_code_gen_t CG = lto_codegen_create_in_local_context();
for (auto &File : FilesToLink) {
lto_module_t M = lto_module_create_in_codegen_context(File..., CG);
lto_codegen_add_module(CG, M);
lto_module_dispose(M);
}
lto_codegen_compile(CG);
lto_codegen_write_merged_modules(CG, ...);
lto_codegen_dispose(CG);
This flow has a few benefits.
- Only one module (two if you count the combined module in the code
generator) is in memory at a time.
- Metadata (and constants) from files that are parsed to query symbols
but not linked into the code generator don't pollute the global
context.
- The first for loop can be parallelized, since each module is in its
own context.
- When the code generator is disposed, the memory from LTO gets freed.
rdar://problem/18767512
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221733 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This change moves asan-coverage instrumentation
into a separate Module pass.
The other part of the change in clang introduces a new flag
-fsanitize-coverage=N.
Another small patch will update tests in compiler-rt.
With this patch no functionality change is expected except for the flag name.
The following changes will make the coverage instrumentation work with tsan/msan
Test Plan: Run regression tests, chromium.
Reviewers: nlewycky, samsonov
Reviewed By: nlewycky, samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6152
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221718 91177308-0d34-0410-b5e6-96231b3b80d8
Instead, we're going to separate metadata from the Value hierarchy. See
PR21532.
This reverts commit r221375.
This reverts commit r221373.
This reverts commit r221359.
This reverts commit r221167.
This reverts commit r221027.
This reverts commit r221024.
This reverts commit r221023.
This reverts commit r220995.
This reverts commit r220994.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221711 91177308-0d34-0410-b5e6-96231b3b80d8
What would happen before that commit is that the SDDbgValues associated with
a deallocated SDNode would be marked Invalidated, but SDDbgInfo would keep
a map entry keyed by the SDNode pointer pointing to this list of invalidated
SDDbgNodes. As the memory gets reused, the list might get wrongly associated
with another new SDNode. As the SDDbgValues are cloned when they are transfered,
this can lead to an exponential number of SDDbgValues being produced during
DAGCombine like in http://llvm.org/bugs/show_bug.cgi?id=20893
Note that the previous behavior wasn't really buggy as the invalidation made
sure that the SDDbgValues won't be used. This commit can be considered a
memory optimization and as such is really hard to validate in a unit-test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221709 91177308-0d34-0410-b5e6-96231b3b80d8
This commit adds a new pass that can inject checks before indirect calls to
make sure that these calls target known locations. It supports three types of
checks and, at compile time, it can take the name of a custom function to call
when an indirect call check fails. The default failure function ignores the
error and continues.
This pass incidentally moves the function JumpInstrTables::transformType from
private to public and makes it static (with a new argument that specifies the
table type to use); this is so that the CFI code can transform function types
at call sites to determine which jump-instruction table to use for the check at
that site.
Also, this removes support for jumptables in ARM, pending further performance
analysis and discussion.
Review: http://reviews.llvm.org/D4167
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221708 91177308-0d34-0410-b5e6-96231b3b80d8
Referencing one symbol from another in the same section does not
generally require a relocation. However, the MS linker has a feature
called /INCREMENTAL which enables incremental links. It achieves this
by creating thunks to the actual function and redirecting all
relocations to point to the thunk.
This breaks down with the old scheme if you have a function which
references, say, itself. On x86_64, we would use %rip relative
addressing to reference the start of the function from out current
position. This would lead to miscompiles because other references might
reference the thunk instead, breaking function pointer equality.
This fixes PR21520.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221678 91177308-0d34-0410-b5e6-96231b3b80d8
This adds const to a few methods that already return const references or
creates a const version when they reterun non-const references.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221666 91177308-0d34-0410-b5e6-96231b3b80d8
This introduces the symbol rewriter. This is an IR->IR transformation that is
implemented as a CodeGenPrepare pass. This allows for the transparent
adjustment of the symbols during compilation.
It provides a clean, simple, elegant solution for symbol inter-positioning. This
technique is often used, such as in the various sanitizers and performance
analysis.
The control of this is via a custom YAML syntax map file that indicates source
to destination mapping, so as to avoid having the compiler to know the exact
details of the source to destination transformations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221548 91177308-0d34-0410-b5e6-96231b3b80d8
I.E., there is no value is having
void foo() override = 0;
If it is override it is already present in a base class. Since it is pure,
some other class will have to implement it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221537 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
In addition to the usual f128 workaround, it was also necessary to provide
a means of accessing ArgListEntry::IsFixed.
Reviewers: theraven, vmedic
Reviewed By: vmedic
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6111
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221518 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Teach llvm-symbolizer about PowerPC64 ELF function descriptors. Symbols in the .opd section point to function descriptors, the first word of which is a pointer to the real function. For the purposes of symbolizing we pretend that the symbol points directly to the function.
This is enough to get decent function names in stack traces for unoptimized binaries, which fixes the sanitizer print-stack-trace test on PowerPC64 Linux.
Reviewers: kcc, willschm, samsonov
Reviewed By: samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6110
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221514 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This makes PIC levels a Module flag attribute, which can be queried by the
backend. The flag is named `PIC Level`, and can have a value of:
0 - Backend-default
1 - Small-model (-fpic)
2 - Large-model (-fPIC)
These match the `-pic-level' command line argument for clang, and the value of the
preprocessor macro `__PIC__'.
Test Plan:
New flags tests specific for the 'PIC Level' module flag.
Tests to be added as part of a future commit for PowerPC, which will use this new API.
Reviewers: rafael, echristo
Reviewed By: rafael, echristo
Subscribers: rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D5882
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221510 91177308-0d34-0410-b5e6-96231b3b80d8
The ELF symbol `st_other` field might contain additional flags besides
visibility ones. This patch implements support for some MIPS specific
flags.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221491 91177308-0d34-0410-b5e6-96231b3b80d8
Imported declarations can be DIGlobalVariables which aren't a DIScope. Today
clang (unknowingly I believe) shoehorns these into a DIScope and it all works
just because we never access the fields.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221466 91177308-0d34-0410-b5e6-96231b3b80d8
Change `NamedMDNode::getOperator()` from returning `MDNode *` to
returning `Value *`. To reduce boilerplate at some call sites, add a
`getOperatorAsMDNode()` for named metadata that's expected to only
return `MDNode` -- for now, that's everything, but debug node named
metadata (such as llvm.dbg.cu and llvm.dbg.sp) will soon change. This
is part of PR21433.
Note that there's a follow-up patch to clang for the API change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221375 91177308-0d34-0410-b5e6-96231b3b80d8
Change `NamedMDNode::addOperand()` to take a `Value *` instead of an
`MDNode *`. This is part of PR21433.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221359 91177308-0d34-0410-b5e6-96231b3b80d8
Commit 220932 caused crash when building clang-tblgen on aarch64 debian target,
so it's blocking all daily tests.
The std::call_once implementation in pthread has bug for aarch64 debian.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221331 91177308-0d34-0410-b5e6-96231b3b80d8
This patch improves how the different costs (register, interference, spill
and coalescing) relates together. The assumption is now that:
- coalescing (or any other "side effect" of reg alloc) is negative, and
instead of being derived from a spill cost, they use the block
frequency info.
- spill costs are in the [MinSpillCost:+inf( range
- register or interference costs are in [0.0:MinSpillCost( or +inf
The current MinSpillCost is set to 10.0, which is a random value high
enough that the current constraint builders do not need to worry about
when settings costs. It would however be worth adding a normalization
step for register and interference costs as the last step in the
constraint builder chain to ensure they are not greater than SpillMinCost
(unless this has some sense for some architectures). This would work well
with the current builder pipeline, where all costs are tweaked relatively
to each others, but could grow above MinSpillCost if the pipeline is
deep enough.
The current heuristic is tuned to depend rather on the number of uses of
a live interval rather than a density of uses, as used by the greedy
allocator. This heuristic provides a few percent improvement on a number
of benchmarks (eembc, spec, ...) and will definitely need to change once
spill placement is implemented: the current spill placement is really
ineficient, so making the cost proportionnal to the number of use is a
clear win.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221292 91177308-0d34-0410-b5e6-96231b3b80d8
We shouldn't put this kind of attribute stuff in DataTypes.h.
Leave the END_WITH_NULL name for now so I can update clang without
making build spam.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221215 91177308-0d34-0410-b5e6-96231b3b80d8
the tombstone or empty keys of a DenseMap<int64_t, T>. This patch
fixes the issue (and adds a tests case).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221214 91177308-0d34-0410-b5e6-96231b3b80d8
LoadCombine can be smarter about aborting when a writing instruction is
encountered, instead of aborting upon encountering any writing instruction, use
an AliasSetTracker, and only abort when encountering some write that might
alias with the loads that could potentially be combined.
This was originally motivated by comments made (and a test case provided) by
David Majnemer in response to PR21448. It turned out that LoadCombine was not
responsible for that PR, but LoadCombine should also be improved so that
unrelated stores (and @llvm.assume) don't interrupt load combining.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221203 91177308-0d34-0410-b5e6-96231b3b80d8
Unconditional noexcept support was added in the VS 2013 Nov CTP. Given
that there have been three CTPs since then, I don't think we need
careful macro magic to target that specific tech preview. Instead,
target the major release version number of 1900, which corresponds to
the as-yet unreleased VS "14".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221169 91177308-0d34-0410-b5e6-96231b3b80d8
Change `Instruction::getAllMetadataOtherThanDebugLoc()` from a vector of
`MDNode` to one of `Value`. Part of PR21433.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221167 91177308-0d34-0410-b5e6-96231b3b80d8
When LLVM emits DWARF call frame information, it currently creates a local,
section-relative symbol in the code section, which is pointed to by a
relocation on the .eh_frame section. However, for C++ we emit some functions in
section groups, and the SysV ABI has some rules to make it easier to remove
these sections
(http://www.sco.com/developers/gabi/latest/ch4.sheader.html#section_group_rules):
A symbol table entry with STB_LOCAL binding that is defined relative to one
of a group's sections, and that is contained in a symbol table section that is
not part of the group, must be discarded if the group members are discarded.
References to this symbol table entry from outside the group are not allowed.
This means that we need to use the function symbol for the relocation, not a
temporary symbol.
There was a comment in the code claiming that the local symbol was used to
avoid creating a relocation, but a relocation must be created anyway as the
code and CFI are in different sections.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221150 91177308-0d34-0410-b5e6-96231b3b80d8
The problem is mostly that variadic output instruction
aren't handled, so it is rejected for having an inconsistent
number of operands, and then the right number of operands
isn't emitted.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221117 91177308-0d34-0410-b5e6-96231b3b80d8
m_ZExt might bind against a ConstantExpr instead of an Instruction.
Assuming this, using cast<Instruction>, results in InstCombine crashing.
Instead, introduce ZExtOperator to bridge both Instruction and
ConstantExpr ZExts.
This fixes PR21445.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221069 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
CustomCallingConv is simply a CallingConv that tablegen should not generate the
implementation for. It allows regular CallingConv's to delegate to these custom
functions. This is (currently) necessary for Mips and we cannot use CCCustom
without having to adapt to the different API that CCCustom uses.
This brings us a bit closer to being able to remove
MipsCC::analyzeCallOperands and MipsCC::analyzeFormalArguments in favour of
the common implementation.
No functional change to the targets.
Depends on D3341
Reviewers: vmedic
Reviewed By: vmedic
Subscribers: vmedic, llvm-commits
Differential Revision: http://reviews.llvm.org/D5965
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221052 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch extends the 'show' and 'merge' commands in llvm-profdata to handle
sample PGO formats. Using the 'merge' command it is now possible to convert
one sample PGO format to another.
The only format that is currently not working is 'gcc'. I still need to
implement support for it in lib/ProfileData.
The changes in the sample profile support classes are needed for the
merge operation.
Reviewers: bogner
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6065
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221032 91177308-0d34-0410-b5e6-96231b3b80d8
Change `Instruction::getAllMetadata()` to modify a vector of `Value`
instead of `MDNode` and update call sites. This is part of PR21433.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221027 91177308-0d34-0410-b5e6-96231b3b80d8
Change `Instruction::getMetadata()` to return `Value` as part of
PR21433.
Update most callers to use `Instruction::getMDNode()`, which wraps the
result in a `cast_or_null<MDNode>`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221024 91177308-0d34-0410-b5e6-96231b3b80d8
Add `Instruction::getMDNode()` that casts to `MDNode` before changing
`Instruction::getMetadata()` to return `Value`. This avoids adding
`cast_or_null<MDNode>` boiler-plate throughout the code.
Part of PR21433.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221023 91177308-0d34-0410-b5e6-96231b3b80d8
It appears to ignore or find ambiguous MachineInstrBuilder's conversion
operators that allow conversion to MachineInstr* and
MachineBasicBlock::bundle_iterator.
As a workaround, add an explicit way to get the MachineInstr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221017 91177308-0d34-0410-b5e6-96231b3b80d8
We have to use _MSC_FULL_VER here as CTP 2 and earlier didn't define
noexcept to my knowledge.
Fixes build error in lib/Support/Error.cpp when inheriting from
std::error_category, which has a noexcept virtual method.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221013 91177308-0d34-0410-b5e6-96231b3b80d8
The getBinary and getBuffer method now return ordinary pointers of appropriate
const-ness. Ownership is transferred by calling takeBinary(), which returns a
pair of the Binary and a MemoryBuffer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221003 91177308-0d34-0410-b5e6-96231b3b80d8
Now that we have initial support for VSX, we can begin adding
intrinsics for programmer access to VSX instructions. This patch adds
basic support for VSX intrinsics in general, and tests it by
implementing intrinsics for minimum and maximum for the vector double
data type.
The LLVM portion of this is quite straightforward. There is a
companion patch for Clang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220988 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds an optimization in CodeGenPrepare to move an extractelement
right before a store when the target can combine them.
The optimization may promote any scalar operations to vector operations in the
way to make that possible.
** Context **
Some targets use different register files for both vector and scalar operations.
This means that transitioning from one domain to another may incur copy from one
register file to another. These copies are not coalescable and may be expensive.
For example, according to the scheduling model, on cortex-A8 a vector to GPR
move is 20 cycles.
** Motivating Example **
Let us consider an example:
define void @foo(<2 x i32>* %addr1, i32* %dest) {
%in1 = load <2 x i32>* %addr1, align 8
%extract = extractelement <2 x i32> %in1, i32 1
%out = or i32 %extract, 1
store i32 %out, i32* %dest, align 4
ret void
}
As it is, this IR generates the following assembly on armv7:
vldr d16, [r0] @vector load
vmov.32 r0, d16[1] @ cross-register-file copy: 20 cycles
orr r0, r0, #1 @ scalar bitwise or
str r0, [r1] @ scalar store
bx lr
Whereas we could generate much faster code:
vldr d16, [r0] @ vector load
vorr.i32 d16, #0x1 @ vector bitwise or
vst1.32 {d16[1]}, [r1:32] @ vector extract + store
bx lr
Half of the computation made in the vector is useless, but this allows to get
rid of the expensive cross-register-file copy.
** Proposed Solution **
To avoid this cross-register-copy penalty, we promote the scalar operations to
vector operations. The penalty will be removed if we manage to promote the whole
chain of computation in the vector domain.
Currently, we do that only when the chain of computation ends by a store and the
target is able to combine an extract with a store.
Stores are the most likely candidates, because other instructions produce values
that would need to be promoted and so, extracted as some point[1]. Moreover,
this is customary that targets feature stores that perform a vector extract (see
AArch64 and X86 for instance).
The proposed implementation relies on the TargetTransformInfo to decide whether
or not it is beneficial to promote a chain of computation in the vector domain.
Unfortunately, this interface is rather inaccurate for this level of details and
although this optimization may be beneficial for X86 and AArch64, the inaccuracy
will lead to the optimization being too aggressive.
Basically in TargetTransformInfo, everything that is legal has a cost of 1,
whereas, even if a vector type is legal, usually a vector operation is slightly
more expensive than its scalar counterpart. That will lead to too many
promotions that may not be counter balanced by the saving of the
cross-register-file copy. For instance, on AArch64 this penalty is just 4
cycles.
For now, the optimization is just enabled for ARM prior than v8, since those
processors have a larger penalty on cross-register-file copies, and the scope is
limited to basic blocks. Because of these two factors, we limit the effects of
the inaccuracy. Indeed, I did not want to build up a fancy cost model with block
frequency and everything on top of that.
[1] We can imagine targets that can combine an extractelement with other
instructions than just stores. If we want to go into that direction, the current
interfaces must be augmented and, moreover, I think this becomes a global isel
problem.
Differential Revision: http://reviews.llvm.org/D5921
<rdar://problem/14170854>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220978 91177308-0d34-0410-b5e6-96231b3b80d8
Do a better job classifying symbols. This increases the consistency
between the COFF handling code and the ELF side of things.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220952 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch adds an llvm_call_once which is a wrapper around std::call_once on platforms where it is available and devoid of bugs. The patch also migrates the ManagedStatic mutex to be allocated using llvm_call_once.
These changes are philosophically equivalent to the changes added in r219638, which were reverted due to a hang on Win32 which was the result of a bug in the Windows implementation of std::call_once.
Reviewers: aaron.ballman, chapuni, chandlerc, rnk
Reviewed By: rnk
Subscribers: majnemer, llvm-commits
Differential Revision: http://reviews.llvm.org/D5922
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220932 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch finishes up support for handling sampling profiles in both
text and binary formats. The new binary format uses uleb128 encoding to
represent numeric values. This makes profiles files about 25% smaller.
The profile writer class can write profiles in the existing text and the
new binary format. In subsequent patches, I will add the capability to
read (and perhaps write) profiles in the gcov format used by GCC.
Additionally, I will be adding support in llvm-profdata to manipulate
sampling profiles.
There was a bit of refactoring needed to separate some code that was in
the reader files, but is actually common to both the reader and writer.
The new test checks that reading the same profile encoded as text or
raw, produces the same results.
Reviewers: bogner, dexonsmith
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6000
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220915 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: This helps llvm-objdump -r to print out the symbol name along
with the relocation type on x86. Adjust existing tests from checking
for "Unknown" to check for the symbol now.
Test Plan: Adjusted test/Object tests.
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5987
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220866 91177308-0d34-0410-b5e6-96231b3b80d8
This is a Microsoft calling convention that supports both x86 and x86_64
subtargets. It passes vector and floating point arguments in XMM0-XMM5,
and passes them indirectly once they are consumed.
Homogenous vector aggregates of up to four elements can be passed in
sequential vector registers, but this part is not implemented in LLVM
and will be handled in Clang.
On 32-bit x86, it is similar to fastcall in that it uses ecx:edx as
integer register parameters and is callee cleanup. On x86_64, it
delegates to the normal win64 calling convention.
Reviewers: majnemer
Differential Revision: http://reviews.llvm.org/D5943
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220745 91177308-0d34-0410-b5e6-96231b3b80d8
I noticed that it was untested, and forcing it on caused some tests to fail:
LLVM :: Linker/metadata-a.ll
LLVM :: Linker/prefixdata.ll
LLVM :: Linker/type-unique-odr-a.ll
LLVM :: Linker/type-unique-simple-a.ll
LLVM :: Linker/type-unique-simple2-a.ll
LLVM :: Linker/type-unique-simple2.ll
LLVM :: Linker/type-unique-type-array-a.ll
LLVM :: Linker/unnamed-addr1-a.ll
LLVM :: Linker/visibility1.ll
If it is to be resurrected, it has to be fixed and we should probably have a
-preserve-source command line option in llvm-mc and run tests with and without
it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220741 91177308-0d34-0410-b5e6-96231b3b80d8