Hard float for mips16 means essentially to compile as soft float but to
use a runtime library for soft float that is written with native mips32
floating point instructions (those runtime routines run in mips32 hard
float mode).
The patch reviewed by Reed Kotler.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195123 91177308-0d34-0410-b5e6-96231b3b80d8
functions be compiled as mips32, without having to add attributes. This
is useful in certain situations where you don't want to have to edit the
function attributes in the source. For now it's only an option used for
the compiler developers when debugging the mips16 port.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188826 91177308-0d34-0410-b5e6-96231b3b80d8
This is actually an LLVM bug in the way it generates signatures for these
when soft float is enabled. For example, floor ends up having the signature
of int64(int64). The signature part is not the same as where the actual
parameter types are recorded, and those ARE of course int64(int64) when
soft float is enabled. (Yes, Mips16 hard float uses soft float but with
different runtime rounes but then has to interoperate with Mips32 using
normal floating point). This logic will eventually be moved to the
Mips16HardFloat pass so it's not worth sorting out these issues in LLVM
since nobody but Mips16 cares about these signatures, as far as I know,
and even I won't eventually either.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187613 91177308-0d34-0410-b5e6-96231b3b80d8