their inputs come from std::stable_sort and they are not total orders.
I'm not a huge fan of this, but the really bad std::stable_sort is right
at the beginning of Reassociate. After we commit to stable-sort based
consistent respect of source order, the downstream sorts shouldn't undo
that unless they have a total order or they are used in an
order-insensitive way. Neither appears to be true for these cases.
I don't have particularly good test cases, but this jumped out by
inspection when looking for output instability in this pass due to
changes in the ordering of std::sort.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202196 91177308-0d34-0410-b5e6-96231b3b80d8
implemented this way a long time ago and due to the overwhelming bugs
that surfaced, moved to a much more relaxed variant. Richard Smith would
like to understand the magnitude of this problem and it seems fairly
harmless to keep some flag-controlled logic to get the extremely strict
behavior here. I'll remove it if it doesn't prove useful.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202193 91177308-0d34-0410-b5e6-96231b3b80d8
Instead, have a DataLayoutPass that holds one. This will allow parts of LLVM
don't don't handle passes to also use DataLayout.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202168 91177308-0d34-0410-b5e6-96231b3b80d8
just "load". This helps avoid pointless de-duping with order-sensitive
numbers as we already have unique names from the original load. It also
makes the resulting IR quite a bit easier to read.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202140 91177308-0d34-0410-b5e6-96231b3b80d8
the pointer adjustment code. This is the primary code path that creates
totally new instructions in SROA and being able to lump them based on
the pointer value's name for which they were created causes
*significantly* fewer name collisions and general noise in the debug
output. This is particularly significant because it is making it much
harder to track down instability in the output of SROA, as name
de-duplication is a totally harmless form of instability that gets in
the way of seeing real problems.
The new fancy naming scheme tries to dig out the root "pre-SROA" name
for pointer values and associate that all the way through the pointer
formation instructions. Digging out the root is important to prevent the
multiple iterative rounds of SROA from just layering too much cruft on
top of cruft here. We already track the layers of SROAs iteration in the
alloca name prefix. We don't need to duplicate it here.
Should have no functionality change, and shouldn't have any really
measurable impact on NDEBUG builds, as most of the complex logic is
debug-only.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202139 91177308-0d34-0410-b5e6-96231b3b80d8
using OldPtr more heavily. Lots of this code was written before the
rewriter had an OldPtr member setup ahead of time. There are already
asserts in place that should ensure this doesn't change any
functionality.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202135 91177308-0d34-0410-b5e6-96231b3b80d8
the break statement, not just think it to yourself....
No idea how this worked at all, much less survived most bots, my
bootstrap, and some bot bootstraps!
The Polly one didn't survive, and this was filed as PR18959. I don't
have a reduced test case and honestly I'm not seeing the need. What we
probably need here are better asserts / debug-build behavior in
SmallPtrSet so that this madness doesn't make it so far.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202129 91177308-0d34-0410-b5e6-96231b3b80d8
sorting it. This helps uncover latent reliance on the original ordering
which aren't guaranteed to be preserved by std::sort (but often are),
and which are based on the use-def chain orderings which also aren't
(technically) guaranteed.
Only available in C++11 debug builds, and behind a flag to prevent noise
at the moment, but this is generally useful so figured I'd put it in the
tree rather than keeping it out-of-tree.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202106 91177308-0d34-0410-b5e6-96231b3b80d8
the destination operand or source operand of a memmove.
It so happens that it was impossible for SROA to try to rewrite
self-memmove where the operands are *identical*, because either such
a think is volatile (and we don't rewrite) or it is non-volatile, and we
don't even register it as a use of the alloca.
However, making the 'IsDest' test *rely* on this subtle fact is... Very
confusing for the reader. We should use the direct and readily available
test of the Use* which gives us concrete information about which operand
is being rewritten.
No functionality changed, I hope! ;]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202103 91177308-0d34-0410-b5e6-96231b3b80d8
ordering.
The fundamental problem that we're hitting here is that the use-def
chain ordering is *itself* not a stable thing to be relying on in the
rewriting for SROA. Further, we use a non-stable sort over the slices to
arrange them based on the section of the alloca they're operating on.
With a debugging STL implementation (or different implementations in
stage2 and stage3) this can cause stage2 != stage3.
The specific aspect of this problem fixed in this commit deals with the
rewriting and load-speculation around PHIs and Selects. This, like many
other aspects of the use-rewriting in SROA, is really part of the
"strong SSA-formation" that is doen by SROA where it works very hard to
canonicalize loads and stores in *just* the right way to satisfy the
needs of mem2reg[1]. When we have a select (or a PHI) with 2 uses of the
same alloca, we test that loads downstream of the select are
speculatable around it twice. If only one of the operands to the select
needs to be rewritten, then if we get lucky we rewrite that one first
and the select is immediately speculatable. This can cause the order of
operand visitation, and thus the order of slices to be rewritten, to
change an alloca from promotable to non-promotable and vice versa.
The fix is to defer all of the speculation until *after* the rewrite
phase is done. Once we've rewritten everything, we can accurately test
for whether speculation will work (once, instead of twice!) and the
order ceases to matter.
This also happens to simplify the other subtlety of speculation -- we
need to *not* speculate anything unless the result of speculating will
make the alloca fully promotable by mem2reg. I had a previous attempt at
simplifying this, but it was still pretty horrible.
There is actually already a *really* nice test case for this in
basictest.ll, but on multiple STL implementations and inputs, we just
got "lucky". Fortunately, the test case is very small and we can
essentially build it in exactly the opposite way to get reasonable
coverage in both directions even from normal STL implementations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202092 91177308-0d34-0410-b5e6-96231b3b80d8
After this I will set the default back to F_None. The advantage is that
before this patch forgetting to set F_Binary would corrupt a file on windows.
Forgetting to set F_Text produces one that cannot be read in notepad, which
is a better failure mode :-)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202052 91177308-0d34-0410-b5e6-96231b3b80d8
During the LTO phase LICM will move loop invariant global variables out of loops
(informed by GlobalModRef). This makes more loops countable presenting
opportunity for the loop vectorizer.
Adding the loop vectorizer improves some TSVC benchmarks and twolf/ref dataset
(5%) on x86-64.
radar://15970632
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202051 91177308-0d34-0410-b5e6-96231b3b80d8
CodeGenPrepare uses extensively TargetLowering which is part of libLLVMCodeGen.
This is a layer violation which would introduce eventually a dependence on
CodeGen in ScalarOpts.
Move CodeGenPrepare into libLLVMCodeGen to avoid that.
Follow-up of <rdar://problem/15519855>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201912 91177308-0d34-0410-b5e6-96231b3b80d8
I am really sorry for the noise, but the current state where some parts of the
code use TD (from the old name: TargetData) and other parts use DL makes it
hard to write a patch that changes where those variables come from and how
they are passed along.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201827 91177308-0d34-0410-b5e6-96231b3b80d8
r201608 made llvm corretly handle private globals with MachO. r201622 fixed
a bug in it and r201624 and r201625 were changes for using private linkage,
assuming that llvm would do the right thing.
They all got reverted because r201608 introduced a crash in LTO. This patch
includes a fix for that. The issue was that TargetLoweringObjectFile now has
to be initialized before we can mangle names of private globals. This is
trivially true during the normal codegen pipeline (the asm printer does it),
but LTO has to do it manually.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201700 91177308-0d34-0410-b5e6-96231b3b80d8
Since r201608 got reverted, it is not safe to use private linkage in these cases
until it is committed back.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201688 91177308-0d34-0410-b5e6-96231b3b80d8
On x86, shifting a vector by a scalar is significantly cheaper than shifting a
vector by another fully general vector. Unfortunately, because SelectionDAG
operates on just one basic block at a time, the shufflevector instruction that
reveals whether the right-hand side of a shift *is* really a scalar is often
not visible to CodeGen when it's needed.
This adds another handler to CodeGenPrepare, to sink any useful shufflevector
instructions down to the basic block where they're used, predicated on a target
hook (since on other architectures, doing so will often just introduce extra
real work).
rdar://problem/16063505
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201655 91177308-0d34-0410-b5e6-96231b3b80d8
As defined in LangRef, aliases do not have sections. However, LLVM's
GlobalAlias class inherits from GlobalValue, which means we can read and
set its section. We should probably ban that as a separate change,
since it doesn't make much sense for an alias to have a section that
differs from its aliasee.
Fixes PR18757, where the section was being lost on the global in code
from Clang like:
extern "C" {
__attribute__((used, section("CUSTOM"))) static int in_custom_section;
}
Reviewers: rafael.espindola
Differential Revision: http://llvm-reviews.chandlerc.com/D2758
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201286 91177308-0d34-0410-b5e6-96231b3b80d8
logical operations on the i1's driving them. This is a bad idea for every
target I can think of (confirmed with micro tests on all of: x86-64, ARM,
AArch64, Mips, and PowerPC) because it forces the i1 to be materialized into
a general purpose register, whereas consuming it directly into a select generally
allows it to exist only transiently in a predicate or flags register.
Chandler ran a set of performance tests with this change, and reported no
measurable change on x86-64.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201275 91177308-0d34-0410-b5e6-96231b3b80d8
'OK_NonUniformConstValue' to identify operands which are constants but
not constant splats.
The cost model now allows returning 'OK_NonUniformConstValue'
for non splat operands that are instances of ConstantVector or
ConstantDataVector.
With this change, targets are now able to compute different costs
for instructions with non-uniform constant operands.
For example, On X86 the cost of a vector shift may vary depending on whether
the second operand is a uniform or non-uniform constant.
This patch applies the following changes:
- The cost model computation now takes into account non-uniform constants;
- The cost of vector shift instructions has been improved in
X86TargetTransformInfo analysis pass;
- BBVectorize, SLPVectorizer and LoopVectorize now know how to distinguish
between non-uniform and uniform constant operands.
Added a new test to verify that the output of opt
'-cost-model -analyze' is valid in the following configurations: SSE2,
SSE4.1, AVX, AVX2.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201272 91177308-0d34-0410-b5e6-96231b3b80d8
Fixes PR18753 and PR18782.
This is necessary for LICM to preserve LCSSA correctly and efficiently.
There is still some active discussion about whether we should be using
LCSSA, but we can't just immediately stop using it and we *need* LICM to
preserve it while we are using it. We can restore the old SSAUpdater
driven code if and when there is a serious effort to remove the reliance
on LCSSA from all of the loop passes.
However, this also serves as a great example of why LCSSA is very nice
to have. This change significantly simplifies the process of sinking
instructions for LICM, and makes it quite a bit less expensive.
It wouldn't even be as complex as it is except that I had to start the
process of removing the big recursive LCSSA formation hammer in order to
switch even this much of the re-forming code to asserting that LCSSA was
preserved. I'll fully remove that next just to tidy things up until the
LCSSA debate settles one way or the other.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201148 91177308-0d34-0410-b5e6-96231b3b80d8
The addressing mode matcher checks at some point the profitability of folding an
instruction into the addressing mode. When the instruction to be folded has
several uses, it checks that the instruction can be folded in each use.
To do so, it creates a new matcher for each use and check if the instruction is
in the list of the matched instructions of this new matcher.
The new matchers may promote some instructions and this has to be undone to keep
the state of the original matcher consistent.
A test case will follow.
<rdar://problem/16020230>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201121 91177308-0d34-0410-b5e6-96231b3b80d8
The crux of the issue is that LCSSA doesn't preserve stateful alias
analyses. Before r200067, LICM didn't cause LCSSA to run in the LTO pass
manager, where LICM runs essentially without any of the other loop
passes. As a consequence the globalmodref-aa pass run before that loop
pass manager was able to survive the loop pass manager and be used by
DSE to eliminate stores in the function called from the loop body in
Adobe-C++/loop_unroll (and similar patterns in other benchmarks).
When LICM was taught to preserve LCSSA it had to require it as well.
This caused it to be run in the loop pass manager and because it did not
preserve AA, the stateful AA was lost. Most of LLVM's AA isn't stateful
and so this didn't manifest in most cases. Also, in most cases LCSSA was
already running, and so there was no interesting change.
The real kicker is that LCSSA by its definition (injecting PHI nodes
only) trivially preserves AA! All we need to do is mark it, and then
everything goes back to working as intended. It probably was blocking
some other weird cases of stateful AA but the only one I have is
a 1000-line IR test case from loop_unroll, so I don't really have a good
test case here.
Hopefully this fixes the regressions on performance that have been seen
since that revision.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201104 91177308-0d34-0410-b5e6-96231b3b80d8