Summary:
DataLayout keeps the string used for its creation.
As a side effect it is no longer needed in the Module.
This is "almost" NFC, the string is no longer
canonicalized, you can't rely on two "equals" DataLayout
having the same string returned by getStringRepresentation().
Get rid of DataLayoutPass: the DataLayout is in the Module
The DataLayout is "per-module", let's enforce this by not
duplicating it more than necessary.
One more step toward non-optionality of the DataLayout in the
module.
Make DataLayout Non-Optional in the Module
Module->getDataLayout() will never returns nullptr anymore.
Reviewers: echristo
Subscribers: resistor, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D7992
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231270 91177308-0d34-0410-b5e6-96231b3b80d8
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230794 91177308-0d34-0410-b5e6-96231b3b80d8
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
- Instead of setting the suffixes in a bunch of places, just set one master
list in the top-level config. We now only modify the suffix list in a few
suites that have one particular unique suffix (.ml, .mc, .yaml, .td, .py).
- Aside from removing the need for a bunch of lit.local.cfg files, this enables
4 tests that were inadvertently being skipped (one in
Transforms/BranchFolding, a .s file each in DebugInfo/AArch64 and
CodeGen/PowerPC, and one in CodeGen/SI which is now failing and has been
XFAILED).
- This commit also fixes a bunch of config files to use config.root instead of
older copy-pasted code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188513 91177308-0d34-0410-b5e6-96231b3b80d8
This update was done with the following bash script:
find test/Transforms -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_]*\):\( *\)@$FUNC\([( ]*\)\$/;\1\2-LABEL:\3@$FUNC(/g" $TEMP
done
mv $TEMP $NAME
fi
done
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@186268 91177308-0d34-0410-b5e6-96231b3b80d8
Original commit message:
Defer some shl transforms to DAGCombine.
The shl instruction is used to represent multiplication by a constant
power of two as well as bitwise left shifts. Some InstCombine
transformations would turn an shl instruction into a bit mask operation,
making it difficult for later analysis passes to recognize the
constsnt multiplication.
Disable those shl transformations, deferring them to DAGCombine time.
An 'shl X, C' instruction is now treated mostly the same was as 'mul X, C'.
These transformations are deferred:
(X >>? C) << C --> X & (-1 << C) (When X >> C has multiple uses)
(X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2) (When C2 > C1)
(X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2) (When C1 > C2)
The corresponding exact transformations are preserved, just like
div-exact + mul:
(X >>?,exact C) << C --> X
(X >>?,exact C1) << C2 --> X << (C2-C1)
(X >>?,exact C1) << C2 --> X >>?,exact (C1-C2)
The disabled transformations could also prevent the instruction selector
from recognizing rotate patterns in hash functions and cryptographic
primitives. I have a test case for that, but it is too fragile.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155362 91177308-0d34-0410-b5e6-96231b3b80d8
While the patch was perfect and defect free, it exposed a really nasty
bug in X86 SelectionDAG that caused an llc crash when compiling lencod.
I'll put the patch back in after fixing the SelectionDAG problem.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155181 91177308-0d34-0410-b5e6-96231b3b80d8
The shl instruction is used to represent multiplication by a constant
power of two as well as bitwise left shifts. Some InstCombine
transformations would turn an shl instruction into a bit mask operation,
making it difficult for later analysis passes to recognize the
constsnt multiplication.
Disable those shl transformations, deferring them to DAGCombine time.
An 'shl X, C' instruction is now treated mostly the same was as 'mul X, C'.
These transformations are deferred:
(X >>? C) << C --> X & (-1 << C) (When X >> C has multiple uses)
(X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2) (When C2 > C1)
(X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2) (When C1 > C2)
The corresponding exact transformations are preserved, just like
div-exact + mul:
(X >>?,exact C) << C --> X
(X >>?,exact C1) << C2 --> X << (C2-C1)
(X >>?,exact C1) << C2 --> X >>?,exact (C1-C2)
The disabled transformations could also prevent the instruction selector
from recognizing rotate patterns in hash functions and cryptographic
primitives. I have a test case for that, but it is too fragile.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@155136 91177308-0d34-0410-b5e6-96231b3b80d8
a nice and tidy:
%x1 = load i32* %0, align 4
%1 = icmp eq i32 %x1, 1179403647
br i1 %1, label %if.then, label %if.end
instead of doing lots of loads and branches. May the FreeBSD bootloader
long fit in its allocated space.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130416 91177308-0d34-0410-b5e6-96231b3b80d8
1. Only run the early (in the module pass pipe) instcombine/simplifycfg
if the "unit at a time" passes they are cleaning up after runs.
2. Move the "clean up after the unroller" pass to the very end of the
function-level pass pipeline. Loop unroll uses instsimplify now,
so it doesn't create a ton of trash. Moving instcombine later allows
it to clean up after opportunities are exposed by GVN, DSE, etc.
3. Introduce some phase ordering tests for things that are specifically
intended to be simplified by the full optimizer as a whole.
This resolves PR2338, and is progress towards PR6627, which will be
generating code that looks similar to test2.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@130241 91177308-0d34-0410-b5e6-96231b3b80d8