Summary:
DataLayout keeps the string used for its creation.
As a side effect it is no longer needed in the Module.
This is "almost" NFC, the string is no longer
canonicalized, you can't rely on two "equals" DataLayout
having the same string returned by getStringRepresentation().
Get rid of DataLayoutPass: the DataLayout is in the Module
The DataLayout is "per-module", let's enforce this by not
duplicating it more than necessary.
One more step toward non-optionality of the DataLayout in the
module.
Make DataLayout Non-Optional in the Module
Module->getDataLayout() will never returns nullptr anymore.
Reviewers: echristo
Subscribers: resistor, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D7992
From: Mehdi Amini <mehdi.amini@apple.com>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231270 91177308-0d34-0410-b5e6-96231b3b80d8
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230794 91177308-0d34-0410-b5e6-96231b3b80d8
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
If the landingpad of the invoke is using a personality function that
catches asynch exceptions, then it can catch a trap.
Also add some landingpads to invalid LLVM IR test cases that lack them.
Over-the-shoulder reviewed by David Majnemer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228782 91177308-0d34-0410-b5e6-96231b3b80d8
over declarations.
This is both quite unproductive and causes things to crash, for example
domtree would just assert.
I've added a declaration and a domtree run to the basic high-level tests
for the new pass manager.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227724 91177308-0d34-0410-b5e6-96231b3b80d8
produce it.
This adds a function to the TargetMachine that produces this analysis
via a callback for each function. This in turn faves the way to produce
a *different* TTI per-function with the correct subtarget cached.
I've also done the necessary wiring in the opt tool to thread the target
machine down and make it available to the pass registry so that we can
construct this analysis from a target machine when available.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227721 91177308-0d34-0410-b5e6-96231b3b80d8
TargetLibraryAnalysis pass.
There are actually no direct tests of this already in the tree. I've
added the most basic test that the pass manager bits themselves work,
and the TLI object produced will be tested by an upcoming patches as
they port passes which rely on TLI.
This is starting to point out the awkwardness of the invalidate API --
it seems poorly fitting on the *result* object. I suspect I will change
it to live on the analysis instead, but that's not for this change, and
I'd rather have a few more passes ported in order to have more
experience with how this plays out.
I believe there is only one more analysis required in order to start
porting instcombine. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226160 91177308-0d34-0410-b5e6-96231b3b80d8
Even before I sunk the debug flag into the opt tool this had been made
obsolete by factoring the pass and analysis managers into a single set
of templates that all used the core flag. No functionality changed here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225842 91177308-0d34-0410-b5e6-96231b3b80d8
the generic functionality of the pass managers themselves.
In the new infrastructure, the pass "manager" isn't actually interesting
at all. It just pipelines a single chunk of IR through N passes. We
don't need to know anything about the IR or the passes to do this really
and we can replace the 3 implementations of the exact same functionality
with a single generic PassManager template, complementing the single
generic AnalysisManager template.
I've left typedefs in place to give convenient names to the various
obvious instantiations of the template.
With this, I think I've nuked almost all of the redundant logic in the
managers, and I think the overall design is actually simpler for having
single templates that clearly indicate there is no special logic here.
The logging is made somewhat more annoying by this change, but I don't
think the difference is worth having heavy-weight traits to help log
things.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225783 91177308-0d34-0410-b5e6-96231b3b80d8
template.
This consolidates three copies of nearly the same core logic. It adds
"complexity" to the ModuleAnalysisManager in that it makes it possible
to share a ModuleAnalysisManager across multiple modules... But it does
so by deleting *all of the code*, so I'm OK with that. This will
naturally make fixing bugs in this code much simpler, etc.
The only down side here is that we have to use 'typename' and 'this->'
in various places, and the implementation is lifted into the header.
I'll take that for the code size reduction.
The convenient names are still typedef-ed and used throughout so that
users can largely ignore this aspect of the implementation.
The follow-up change to this will do the exact same refactoring for the
PassManagers. =D
It turns out that the interesting different code is almost entirely in
the adaptors. At the end, that should be essentially all that is left.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225757 91177308-0d34-0410-b5e6-96231b3b80d8
requiring and invalidating specific analyses. Also make their printed
names match their class names. Writing these out as prose really doesn't
make sense to me any more.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225346 91177308-0d34-0410-b5e6-96231b3b80d8
passes too many time.
I think this is actually the issue that someone raised with me at the
developer's meeting and in an email, but that we never really got to the
bottom of. Having all the testing utilities made it much easier to dig
down and uncover the core issue.
When a pass manager is running many passes over a single function, we
need it to invalidate the analyses between each run so that they can be
re-computed as needed. We also need to track the intersection of
preserved higher-level analyses across all the passes that we run (for
example, if there is one module analysis which all the function analyses
preserve, we want to track that and propagate it). Unfortunately, this
interacted poorly with any enclosing pass adaptor between two IR units.
It would see the intersection of preserved analyses, and need to
invalidate any other analyses, but some of the un-preserved analyses
might have already been invalidated *and recomputed*! We would fail to
propagate the fact that the analysis had already been invalidated.
The solution to this struck me as really strange at first, but the more
I thought about it, the more natural it seemed. After a nice discussion
with Duncan about it on IRC, it seemed even nicer. The idea is that
invalidating an analysis *causes* it to be preserved! Preserving the
lack of result is trivial. If it is recomputed, great. Until something
*else* invalidates it again, we're good.
The consequence of this is that the invalidate methods on the analysis
manager which operate over many passes now consume their
PreservedAnalyses object, update it to "preserve" every analysis pass to
which it delivers an invalidation (regardless of whether the pass
chooses to be removed, or handles the invalidation itself by updating
itself). Then we return this augmented set from the invalidate routine,
letting the pass manager take the result and use the intersection of
*that* across each pass run to compute the final preserved set. This
accounts for all the places where the early invalidation of an analysis
has already "preserved" it for a future run.
I've beefed up the testing and adjusted the assertions to show that we
no longer repeatedly invalidate or compute the analyses across nested
pass managers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225333 91177308-0d34-0410-b5e6-96231b3b80d8
Use this to test that path of invalidation. This test actually shows
redundant invalidation here that is really bad. I'm going to work on
fixing that next, but wanted to commit the test harness now that its all
working.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225257 91177308-0d34-0410-b5e6-96231b3b80d8
remove an extra, redundant pass manager wrapping every run.
I had kept seeing these when manually testing, but it was getting really
annoying and was going to cause problems with overly eager invalidation.
The root cause was an overly complex and unnecessary pile of code for
parsing the outer layer of the pass pipeline. We can instead delegate
most of this to the recursive pipeline parsing.
I've added some somewhat more basic and precise tests to catch this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225253 91177308-0d34-0410-b5e6-96231b3b80d8
a specific analysis result.
This is quite handy to test things, and will also likely be very useful
for debugging issues. You could narrow down pass validation failures by
walking these invalidate pass runs up and down the pass pipeline, etc.
I've added support to the pass pipeline parsing to be able to create one
of these for any analysis pass desired.
Just adding this class uncovered one latent bug where the
AnalysisManager CRTP base class had a hard-coded Module type rather than
using IRUnitT.
I've also added tests for invalidation and caching of analyses in
a basic way across all the pass managers. These in turn uncovered two
more bugs where we failed to correctly invalidate an analysis -- its
results were invalidated but the key for re-running the pass was never
cleared and so it was never re-run. Quite nasty. I'm very glad to debug
this here rather than with a full system.
Also, yes, the naming here is horrid. I'm going to update some of the
names to be slightly less awful shortly. But really, I've no "good"
ideas for naming. I'll be satisfied if I can get it to "not bad".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225246 91177308-0d34-0410-b5e6-96231b3b80d8
manager tests to use them and be significantly more comprehensive.
This, naturally, uncovered a bug where the CGSCC pass manager wasn't
printing analyses when they were run.
The only remaining core manipulator is I think an invalidate pass
similar to the require pass. That'll be next. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225240 91177308-0d34-0410-b5e6-96231b3b80d8
is a no-op other than requiring some analysis results be available.
This can be used in real pass pipelines to force the usually lazy
analysis running to eagerly compute something at a specific point, and
it can be used to test the pass manager infrastructure (my primary use
at the moment).
I've also added bit of pipeline parsing magic to support generating
these directly from the opt command so that you can directly use these
when debugging your analysis. The syntax is:
require<analysis-name>
This can be used at any level of the pass manager. For example:
cgscc(function(require<my-analysis>,no-op-function))
This would produce a no-op function pass requiring my-analysis, followed
by a fully no-op function pass, both of these in a function pass manager
which is nested inside of a bottom-up CGSCC pass manager which is in the
top-level (implicit) module pass manager.
I have zero attachment to the particular syntax I'm using here. Consider
it a straw man for use while I'm testing and fleshing things out.
Suggestions for better syntax welcome, and I'll update everything based
on any consensus that develops.
I've used this new functionality to more directly test the analysis
printing rather than relying on the cgscc pass manager running an
analysis for me. This is still minimally tested because I need to have
analyses to run first! ;] That patch is next, but wanted to keep this
one separate for easier review and discussion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225236 91177308-0d34-0410-b5e6-96231b3b80d8
when all are being preserved.
We want to short-circuit this for a couple of reasons. One, I don't
really want passes to grow a dependency on actually receiving their
invalidate call when they've been preserved. I'm thinking about removing
this entirely. But more importantly, preserving everything is likely to
be the common case in a lot of scenarios, and it would be really good to
bypass all of the invalidation and preservation machinery there.
Avoiding calling N opaque functions to try to invalidate things that are
by definition still valid seems important. =]
This wasn't really inpsired by much other than seeing the spam in the
logging for analyses, but it seems better ot get it checked in rather
than forgetting about it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225163 91177308-0d34-0410-b5e6-96231b3b80d8
manager.
This starts to allow us to test analyses more easily, but it's really
only the beginning. Some of the code here is still untestable without
manual changes to create analysis passes, but I wanted to factor it into
a small of chunks as possible.
Next up in order to be able to test things are, in no particular order:
- No-op analyses passes so we don't have to use real ones to exercise
the pass maneger itself.
- Automatic way of generating dummy passes that require an analysis be
run, including a variant that calls a 'print' method on a pass to make
it even easier to print out the results of an analysis.
- Dummy passes that invalidate all analyses for their IR unit so we can
test invalidation and re-runs.
- Automatic way to print each analysis pass as it is re-run.
- Automatic but optional verification of analysis passes everywhere
possible.
I'm not claiming I'll get to all of these immediately, but that's what
is in the pipeline at some stage. I'm fleshing out exactly what I need
and what to prioritize by working on converting analyses and then trying
to test the conversion. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225162 91177308-0d34-0410-b5e6-96231b3b80d8
The required functionality has been there for some time, but I never
managed to actually wire it into the command line registry of passes.
Let's do that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225144 91177308-0d34-0410-b5e6-96231b3b80d8
As far as I can tell UTF-8 has been supported since the beginning of Python's
codec support, and it's the de facto standard for text these days, at least
for primarily-English text. This allows us to put Unicode into lit RUN lines.
rdar://problem/18311663
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217688 91177308-0d34-0410-b5e6-96231b3b80d8
This allows streams that only use BLOCKINFO for debugging purposes to omit
the block entirely. As long as another stream is available with the correct
BLOCKINFO, the first stream can still be analyzed and dumped.
As part of this commit, BitstreamReader gets a move constructor and move
assignment operator, as well as a takeBlockInfo method.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216826 91177308-0d34-0410-b5e6-96231b3b80d8
This is mostly a cleanup, but it changes a fairly old behavior.
Every "real" LTO user was already disabling the silly internalize pass
and creating the internalize pass itself. The difference with this
patch is for "opt -std-link-opts" and the C api.
Now to get a usable behavior out of opt one doesn't need the funny
looking command line:
opt -internalize -disable-internalize -internalize-public-api-list=foo,bar -std-link-opts
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214919 91177308-0d34-0410-b5e6-96231b3b80d8
to match llvm-size and other UNIX systems for their nm(1).
Tweak test cases that used llvm-nm with standard input to add a "-" to
indicate that and add a test case to check the default of a.out for llvm-nm.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211529 91177308-0d34-0410-b5e6-96231b3b80d8
As a follow-up to r210375 which canonicalizes addrspacecast
instructions, this patch canonicalizes addrspacecast constant
expressions.
Given clang uses ConstantExpr::getAddrSpaceCast to emit addrspacecast
cosntant expressions, this patch is also a step towards having the
frontend emit canonicalized addrspacecasts.
Piggyback a minor refactor in InstCombineCasts.cpp
Update three affected tests in addrspacecast-alias.ll,
access-non-generic.ll and constant-fold-gep.ll and added one new test in
constant-fold-address-space-pointer.ll
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211004 91177308-0d34-0410-b5e6-96231b3b80d8
This patch changes the design of GlobalAlias so that it doesn't take a
ConstantExpr anymore. It now points directly to a GlobalObject, but its type is
independent of the aliasee type.
To avoid changing all alias related tests in this patches, I kept the common
syntax
@foo = alias i32* @bar
to mean the same as now. The cases that used to use cast now use the more
general syntax
@foo = alias i16, i32* @bar.
Note that GlobalAlias now behaves a bit more like GlobalVariable. We
know that its type is always a pointer, so we omit the '*'.
For the bitcode, a nice surprise is that we were writing both identical types
already, so the format change is minimal. Auto upgrade is handled by looking
through the casts and no new fields are needed for now. New bitcode will
simply have different types for Alias and Aliasee.
One last interesting point in the patch is that replaceAllUsesWith becomes
smart enough to avoid putting a ConstantExpr in the aliasee. This seems better
than checking and updating every caller.
A followup patch will delete getAliasedGlobal now that it is redundant. Another
patch will add support for an explicit offset.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209007 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
When I initially introduced -pass-remarks, I thought it would be a
neat idea to make it additive. So, if one used it as:
$ llc -pass-remarks=inliner --pass-remarks=loop.*
the compiler would build the regular expression '(inliner)|(loop.*)'.
The more I think about it, the more I regret it. This is not how
other flags work. The standard semantics are right-to-left overrides.
This is how clang interprets -Rpass. And I think the two should be
compatible in this respect.
Reviewers: qcolombet
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D3614
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208122 91177308-0d34-0410-b5e6-96231b3b80d8
LazyCallGraph analysis framework. Wire it up all the way through the opt
driver and add some very basic testing that we can build pass pipelines
including these components. Still a lot more to do in terms of testing
that all of this works, but the basic pieces are here.
There is a *lot* of boiler plate here. It's something I'm going to
actively look at reducing, but I don't have any immediate ideas that
don't end up making the code terribly complex in order to fold away the
boilerplate. Until I figure out something to minimize the boilerplate,
almost all of this is based on the code for the existing pass managers,
copied and heavily adjusted to suit the needs of the CGSCC pass
management layer.
The actual CG management still has a bunch of FIXMEs in it. Notably, we
don't do *any* updating of the CG as it is potentially invalidated.
I wanted to get this in place to motivate the new analysis, and add
update APIs to the analysis and the pass management layers in concert to
make sure that the *right* APIs are present.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206745 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This adds support in 'opt' to filter pass remarks emitted by
optimization passes. A new flag -pass-remarks specifies which
passes should emit a diagnostic when LLVMContext::emitOptimizationRemark
is invoked.
This will allow the front end to simply pass along the regular
expression from its own -Rpass flag when launching the backend.
Depends on D3227.
Reviewers: qcolombet
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D3291
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205775 91177308-0d34-0410-b5e6-96231b3b80d8
various opt verifier commandline options.
Mostly mechanical wiring of the verifier to the new pass manager.
Exercises one of the more unusual aspects of it -- a pass can be either
a module or function pass interchangably. If this is ever problematic,
we can make things more constrained, but for things like the verifier
where there is an "obvious" applicability at both levels, it seems
convenient.
This is the next-to-last piece of basic functionality left to make the
opt commandline driving of the new pass manager minimally functional for
testing and further development. There is still a lot to be done there
(notably the factoring into .def files to kill the current boilerplate
code) but it is relatively uninteresting. The only interesting bit left
for minimal functionality is supporting the registration of analyses.
I'm planning on doing that on top of the .def file switch mostly because
the boilerplate for the analyses would be significantly worse.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199646 91177308-0d34-0410-b5e6-96231b3b80d8
This moves the old pass creation functionality to its own header and
updates the callers of that routine. Then it adds a new PM supporting
bitcode writer to the header file, and wires that up in the opt tool.
A test is added that round-trips code into bitcode and back out using
the new pass manager.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199078 91177308-0d34-0410-b5e6-96231b3b80d8
This implements the legacy passes in terms of the new ones. It adds
basic testing using explicit runs of the passes. Next up will be wiring
the basic output mechanism of opt up when the new pass manager is
engaged unless bitcode writing is requested.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199049 91177308-0d34-0410-b5e6-96231b3b80d8
nests to the opt commandline support. This also showcases the
implicit-initial-manager support which will be most useful for testing.
There are several bugs that I spotted by inspection here that I'll fix
with test cases in subsequent commits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199038 91177308-0d34-0410-b5e6-96231b3b80d8
manager. I cannot emphasize enough that this is a WIP. =] I expect it
to change a great deal as things stabilize, but I think its really
important to get *some* functionality here so that the infrastructure
can be tested more traditionally from the commandline.
The current design is looking something like this:
./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))'
So rather than custom-parsed flags, there is a single flag with a string
argument that is parsed into the pass pipeline structure. This makes it
really easy to have nice structural properties that are very explicit.
There is one obvious and important shortcut. You can start off the
pipeline with a pass, and the minimal context of pass managers will be
built around the entire specified pipeline. This makes the common case
for tests super easy:
./bin/opt -passes=instcombine,sroa,gvn
But this won't introduce any of the complexity of the fully inferred old
system -- we only ever do this for the *entire* argument, and we only
look at the first pass. If the other passes don't fit in the pass
manager selected it is a hard error.
The other interesting aspect here is that I'm not relying on any
registration facilities. Such facilities may be unavoidable for
supporting plugins, but I have alternative ideas for plugins that I'd
like to try first. My plan is essentially to build everything without
registration until we hit an absolute requirement.
Instead of registration of pass names, there will be a library dedicated
to parsing pass names and the pass pipeline strings described above.
Currently, this is directly embedded into opt for simplicity as it is
very early, but I plan to eventually pull this into a library that opt,
bugpoint, and even Clang can depend on. It should end up as a good home
for things like the existing PassManagerBuilder as well.
There are a bunch of FIXMEs in the code for the parts of this that are
just stubbed out to make the patch more incremental. A quick list of
what's coming up directly after this:
- Support for function passes and building the structured nesting.
- Support for printing the pass structure, and FileCheck tests of all of
this code.
- The .def-file based pass name parsing.
- IR priting passes and the corresponding tests.
Some obvious things that I'm not going to do right now, but am
definitely planning on as the pass manager work gets a bit further:
- Pull the parsing into library, including the builders.
- Thread the rest of the target stuff into the new pass manager.
- Wire support for the new pass manager up to llc.
- Plugin support.
Some things that I'd like to have, but are significantly lower on my
priority list. I'll get to these eventually, but they may also be places
where others want to contribute:
- Adding nice error reporting for broken pass pipeline descriptions.
- Typo-correction for pass names.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198998 91177308-0d34-0410-b5e6-96231b3b80d8
The fix is simply to use CurI instead of I when handling aliases to
avoid accessing a invalid iterator.
original message:
Convert linkonce* to weak* instead of strong.
Also refactor the logic into a helper function. This is an important improve
on mingw where the linker complains about mixed weak and strong symbols.
Converting to weak ensures that the symbol is not dropped, but keeps in a
comdat, making the linker happy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195477 91177308-0d34-0410-b5e6-96231b3b80d8
Also refactor the logic into a helper function. This is an important improvement
on mingw where the linker complains about mixed weak and strong symbols.
Converting to weak ensures that the symbol is not dropped, but keeps in a
comdat, making the linker happy.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195470 91177308-0d34-0410-b5e6-96231b3b80d8