I had already factored this analysis specifically to enable doing this,
but hadn't actually committed the necessary wiring to get at this from
the new pass manager. This also nicely shows how the separate cache
object can be directly managed by the new pass manager.
This analysis didn't have any direct tests and so I've added a printer
pass and a boring test case. I chose to print the i1 value which is
being assumed rather than the call to llvm.assume as that seems much
more useful for testing... but suggestions on an even better printing
strategy welcome. My main goal was to make sure things actually work. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226868 91177308-0d34-0410-b5e6-96231b3b80d8
ScalarEvolution currently lowers a subtraction recurrence to an add
recurrence with the same no-wrap flags as the subtraction. This is
incorrect because `sub nsw X, Y` is not the same as `add nsw X, -Y`
and `sub nuw X, Y` is not the same as `add nuw X, -Y`. This patch
fixes the issue, and adds two test cases demonstrating the bug.
Differential Revision: http://reviews.llvm.org/D7081
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226755 91177308-0d34-0410-b5e6-96231b3b80d8
pass and a LoopPrinterPass with the expected associated wiring.
I've added a RUN line to the only test case (!!!) we have that actually
prints loops. Everything seems to be working.
This is somewhat exciting as this is the first analysis using another
analysis to go in for the new pass manager. =D I also believe it is the
last analysis necessary for porting instcombine, but of course I may yet
discover more.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226560 91177308-0d34-0410-b5e6-96231b3b80d8
This adds the domtree analysis to the new pass manager. The analysis
returns the same DominatorTree result entity used by the old pass
manager and essentially all of the code is shared. We just have
different boilerplate for running and printing the analysis.
I've converted one test to run in both modes just to make sure this is
exercised while both are live in the tree.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225969 91177308-0d34-0410-b5e6-96231b3b80d8
Correct, we have *zero* basic testing of the dominator tree in the
regression test suite. There is a single test that even prints it out,
and that test only checks a single line of the output. There are
a handful of tests that check post dominators, but all of those are
looking for bugs rather than just exercising the basic machinery.
This test is super boring and unexciting. But hey, it's something.
I needed there to be something so I could switch the basic test to run
with both the old and new pass manager.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225936 91177308-0d34-0410-b5e6-96231b3b80d8
doing Load PRE"
It's not really expected to stick around, last time it provoked a weird LTO
build failure that I can't reproduce now, and the bot logs are long gone. I'll
re-revert it if the failures recur.
Original description: Perform Scalar PRE on gep indices that feed loads before
doing Load PRE.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225536 91177308-0d34-0410-b5e6-96231b3b80d8
Now that `Metadata` is typeless, reflect that in the assembly. These
are the matching assembly changes for the metadata/value split in
r223802.
- Only use the `metadata` type when referencing metadata from a call
intrinsic -- i.e., only when it's used as a `Value`.
- Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
when referencing it from call intrinsics.
So, assembly like this:
define @foo(i32 %v) {
call void @llvm.foo(metadata !{i32 %v}, metadata !0)
call void @llvm.foo(metadata !{i32 7}, metadata !0)
call void @llvm.foo(metadata !1, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{metadata !3}, metadata !0)
ret void, !bar !2
}
!0 = metadata !{metadata !2}
!1 = metadata !{i32* @global}
!2 = metadata !{metadata !3}
!3 = metadata !{}
turns into this:
define @foo(i32 %v) {
call void @llvm.foo(metadata i32 %v, metadata !0)
call void @llvm.foo(metadata i32 7, metadata !0)
call void @llvm.foo(metadata i32* @global, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{!3}, metadata !0)
ret void, !bar !2
}
!0 = !{!2}
!1 = !{i32* @global}
!2 = !{!3}
!3 = !{}
I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines). I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.
This is part of PR21532.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224257 91177308-0d34-0410-b5e6-96231b3b80d8
When a loop gets bundled up, its outgoing edges are quite large, and can
just barely overflow 64-bits. If one successor has multiple incoming
edges -- and that successor is getting all the incoming mass --
combining just its edges can overflow. Handle that by saturating rather
than asserting.
This fixes PR21622.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223500 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Several places in DependenceAnalysis assumes both SCEVs in a subscript pair
share the same integer type. For instance, isKnownPredicate calls
SE->getMinusSCEV(X, Y) which asserts X and Y share the same type. However,
DependenceAnalysis fails to ensure this assumption when producing a subscript
pair, causing tests such as NonCanonicalizedSubscript to crash. With this
patch, DependenceAnalysis runs unifySubscriptType before producing any
subscript pair, ensuring the assumption.
Test Plan:
Added NonCanonicalizedSubscript.ll on which DependenceAnalysis before the fix
crashed because subscripts have different types.
Reviewers: spop, sebpop, jingyue
Reviewed By: jingyue
Subscribers: eliben, meheff, llvm-commits
Differential Revision: http://reviews.llvm.org/D6289
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222100 91177308-0d34-0410-b5e6-96231b3b80d8
HowFarToZero was supposed to use unsigned division in order to calculate
the backedge taken count. However, SCEVDivision::divide performs signed
division. Unless I am mistaken, no users of SCEVDivision actually want
signed arithmetic: switch to udiv and urem.
This fixes PR21578.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222093 91177308-0d34-0410-b5e6-96231b3b80d8
doing Load PRE"
This commit updates the failing test in
Analysis/TypeBasedAliasAnalysis/gvn-nonlocal-type-mismatch.ll
The failing test is sensitive to the order in which we process loads. This
version turns on the RPO traversal instead of the while DT traversal in GVN.
The new test code is functionally same just the order of loads that are
eliminated is swapped.
This new version also fixes an issue where GVN splits a critical edge and
potentially invalidate the RPO/DT iterator.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222039 91177308-0d34-0410-b5e6-96231b3b80d8
Let's try this again...
This reverts r219432, plus a bug fix.
Description of the bug in r219432 (by Nick):
The bug was using AllPositive to break out of the loop; if the loop break
condition i != e is changed to i != e && AllPositive then the
test_modulo_analysis_with_global test I've added will fail as the Modulo will
be calculated incorrectly (as the last loop iteration is skipped, so Modulo
isn't updated with its Scale).
Nick also adds this comment:
ComputeSignBit is safe to use in loops as it takes into account phi nodes, and
the == EK_ZeroEx check is safe in loops as, no matter how the variable changes
between iterations, zero-extensions will always guarantee a zero sign bit. The
isValueEqualInPotentialCycles check is therefore definitely not needed as all
the variable analysis holds no matter how the variables change between loop
iterations.
And this patch also adds another enhancement to GetLinearExpression - basically
to convert ConstantInts to Offsets (see test_const_eval and
test_const_eval_scaled for the situations this improves).
Original commit message:
This reverts r218944, which reverted r218714, plus a bug fix.
Description of the bug in r218714 (by Nick):
The original patch forgot to check if the Scale in VariableGEPIndex flipped the
sign of the variable. The BasicAA pass iterates over the instructions in the
order they appear in the function, and so BasicAliasAnalysis::aliasGEP is
called with the variable it first comes across as parameter GEP1. Adding a
%reorder label puts the definition of %a after %b so aliasGEP is called with %b
as the first parameter and %a as the second. aliasGEP later calculates that %a
== %b + 1 - %idxprom where %idxprom >= 0 (if %a was passed as the first
parameter it would calculate %b == %a - 1 + %idxprom where %idxprom >= 0) -
ignoring that %idxprom is scaled by -1 here lead the patch to incorrectly
conclude that %a > %b.
Revised patch by Nick White, thanks! Thanks to Lang to isolating the bug.
Slightly modified by me to add an early exit from the loop and avoid
unnecessary, but expensive, function calls.
Original commit message:
Two related things:
1. Fixes a bug when calculating the offset in GetLinearExpression. The code
previously used zext to extend the offset, so negative offsets were converted
to large positive ones.
2. Enhance aliasGEP to deduce that, if the difference between two GEP
allocations is positive and all the variables that govern the offset are also
positive (i.e. the offset is strictly after the higher base pointer), then
locations that fit in the gap between the two base pointers are NoAlias.
Patch by Nick White!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221876 91177308-0d34-0410-b5e6-96231b3b80d8
AVX2 is available.
According to IACA, the new lowering has a throughput of 8 cycles instead of 13
with the previous one.
Althought this lowering kicks in some SPECs benchmarks, the performance
improvement was within the noise.
Correctness testing has been done for the whole range of uint32_t with the
following program:
uint4 v = (uint4) {0,1,2,3};
uint32_t i;
//Check correctness over entire range for uint4 -> float4 conversion
for( i = 0; i < 1U << (32-2); i++ )
{
float4 t = test(v);
float4 c = correct(v);
if( 0xf != _mm_movemask_ps( t == c ))
{
printf( "Error @ %vx: %vf vs. %vf\n", v, c, t);
return -1;
}
v += 4;
}
Where "correct" is the old lowering and "test" the new one.
The patch adds a test case for the two custom lowering instruction.
It also modifies the vector cost model, which is why cast.ll and uitofp.ll are
modified.
2009-02-26-MachineLICMBug.ll is also modified because we now hoist 7
instructions instead of 4 (3 more constant loads).
rdar://problem/18153096>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221657 91177308-0d34-0410-b5e6-96231b3b80d8
In a case where we have a no {un,}signed wrap flag on the increment, if
RHS - Start is constant then we can avoid inserting a max operation bewteen
the two, since we can statically determine which is greater.
This allows us to unroll loops such as:
void testcase3(int v) {
for (int i=v; i<=v+1; ++i)
f(i);
}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220960 91177308-0d34-0410-b5e6-96231b3b80d8
DSE's overlap checking contained special logic, used only when no DataLayout
was available, which inferred a complete overwrite when the pointee types were
equal. This logic seems fine for regular loads/stores, but does not work for
memcpy and friends. Instead of fixing this, I'm just removing it.
Philosophically, transformations should not contain enhanced behavior used only
when data layout is lacking (data layout should be strictly additive), and
maintaining these rarely-tested code paths seems not worthwhile at this stage.
Credit to Aliaksei Zasenka for the bug report and the diagnosis. The test case
(slightly reduced from that provided by Aliaksei) replaces the original
contents of test/Transforms/DeadStoreElimination/no-targetdata.ll -- a few
other tests have been updated to have a data layout.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220035 91177308-0d34-0410-b5e6-96231b3b80d8
The CFL-AA implementation was missing a visit* routine for va_arg instructions,
causing it to assert when run on a function that had one. For now, handle these
in a conservative way.
Fixes PR20954.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219718 91177308-0d34-0410-b5e6-96231b3b80d8
It also makes it more aggressive in querying range information by
adding a call to isKnownPredicateWithRanges to
isLoopBackedgeGuardedByCond and isLoopEntryGuardedByCond.
phabricator: http://reviews.llvm.org/D5638
Reviewed by: atrick, hfinkel
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219532 91177308-0d34-0410-b5e6-96231b3b80d8
ScalarEvolution in the presence of multiple exits. Previously all
loops exits had to have identical counts for a loop trip count to be
considered computable. This pessimization was implemented by calling
getBackedgeTakenCount(L) rather than getExitCount(L, ExitingBlock)
inside of ScalarEvolution::getSmallConstantTripCount() (see the FIXME
in the comments of that function). The pessimization was added to fix
a corner case involving undefined behavior (pr/16130). This patch more
precisely handles the undefined behavior case allowing the pessimization
to be removed.
ControlsExit replaces IsSubExpr to more precisely track the case where
undefined behavior is expected to occur. Because undefined behavior is
tracked more precisely we can remove MustExit from ExitLimit. MustExit
was used to track the case where the limit was computed potentially
assuming undefined behavior even if undefined behavior didn't necessarily
occur.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219517 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts r218944, which reverted r218714, plus a bug fix.
Description of the bug in r218714 (by Nick)
The original patch forgot to check if the Scale in VariableGEPIndex flipped the
sign of the variable. The BasicAA pass iterates over the instructions in the
order they appear in the function, and so BasicAliasAnalysis::aliasGEP is
called with the variable it first comes across as parameter GEP1. Adding a
%reorder label puts the definition of %a after %b so aliasGEP is called with %b
as the first parameter and %a as the second. aliasGEP later calculates that %a
== %b + 1 - %idxprom where %idxprom >= 0 (if %a was passed as the first
parameter it would calculate %b == %a - 1 + %idxprom where %idxprom >= 0) -
ignoring that %idxprom is scaled by -1 here lead the patch to incorrectly
conclude that %a > %b.
Revised patch by Nick White, thanks! Thanks to Lang to isolating the bug.
Slightly modified by me to add an early exit from the loop and avoid
unnecessary, but expensive, function calls.
Original commit message:
Two related things:
1. Fixes a bug when calculating the offset in GetLinearExpression. The code
previously used zext to extend the offset, so negative offsets were converted
to large positive ones.
2. Enhance aliasGEP to deduce that, if the difference between two GEP
allocations is positive and all the variables that govern the offset are also
positive (i.e. the offset is strictly after the higher base pointer), then
locations that fit in the gap between the two base pointers are NoAlias.
Patch by Nick White!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219135 91177308-0d34-0410-b5e6-96231b3b80d8
We used to return PartialAlias if *either* variable being queried interacted
with arguments or globals. AFAICT, we can change this to only returning
MayAlias iff *both* variables being queried interacted with arguments or
globals.
Also, adding some basic functionality tests: some basic IPA tests, checking
that we give conservative responses with arguments/globals thrown in the mix,
and ensuring that we trace values through stores and loads.
Note that saying that 'x' interacted with arguments or globals means that the
Attributes of the StratifiedSet that 'x' belongs to has any bits set.
Patch by George Burgess IV, thanks!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219122 91177308-0d34-0410-b5e6-96231b3b80d8
This patch broke 447.dealII on Darwin. I'm currently working on a reduced
test-case, but reverting for now to keep the bots happy.
<rdar://problem/18530107>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218944 91177308-0d34-0410-b5e6-96231b3b80d8
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
Note: I accidentally committed a bogus older version of this patch previously.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218787 91177308-0d34-0410-b5e6-96231b3b80d8
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218778 91177308-0d34-0410-b5e6-96231b3b80d8
Two related things:
1. Fixes a bug when calculating the offset in GetLinearExpression. The code
previously used zext to extend the offset, so negative offsets were converted
to large positive ones.
2. Enhance aliasGEP to deduce that, if the difference between two GEP
allocations is positive and all the variables that govern the offset are also
positive (i.e. the offset is strictly after the higher base pointer), then
locations that fit in the gap between the two base pointers are NoAlias.
Patch by Nick White!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218714 91177308-0d34-0410-b5e6-96231b3b80d8
The default implementation of getCmpSelInstrCost, which provides the cost of
icmp/fcmp/select instructions, did not deal sensibly with illegal vector types
that were scalarized. We'd ask for the legalization cost of the vector type,
which would return something like (4, f64) given an input of <4 x double>, and
we'd then check the TLI status of the ISD opcode on that scalar type. This would
result in querying (ISD::VSELECT, f64), for example. Amusingly enough,
ISD::VSELECT on scalar types is marked as Legal by default (as with most other
operations), and most backends never change this because VSELECT is never
generated on scalars. However, seeing the resulting operation as Legal, we'd
neglect to add the scalarization cost before returning. The result is that we'd
grossly under-estimate the cost of cmps/selects on illegal vector types.
Now, if type legalization clearly results in scalarization, we skip the early
return and add the scalarization cost.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217859 91177308-0d34-0410-b5e6-96231b3b80d8
Cross-class copies being expensive is actually a trait of the microarchitecture, but as I haven't yet seen an example of a microarchitecture where they're cheap it seems best to just enable this by default, covering the non-mcpu build case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217674 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a basic (but important) use of @llvm.assume calls in ScalarEvolution.
When SE is attempting to validate a condition guarding a loop (such as whether
or not the loop count can be zero), this check should also include dominating
assumptions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217348 91177308-0d34-0410-b5e6-96231b3b80d8
This provides an implementation of CFL alias analysis (including some
supporting data structures). Currently, we don't have any extremely fancy
features, sans some interprocedural analysis (i.e. no field sensitivity, etc.),
and we do best sitting behind BasicAA + TBAA. In such a configuration, we take
~0.6-0.8% of total compile time, and give ~7-8% NoAlias responses to queries
TBAA and BasicAA couldn't answer when bootstrapping LLVM. In testing this on
other projects, we've seen up to 10.5% of queries dropped by BasicAA+TBAA
answered with NoAlias by this algorithm.
Patch by George Burgess IV (with minor modifications by me -- mostly adapting
some BasicAA tests), thanks!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216970 91177308-0d34-0410-b5e6-96231b3b80d8
This is the first commit in a series that add an @llvm.assume intrinsic which
can be used to provide the optimizer with a condition it may assume to be true
(when the control flow would hit the intrinsic call). Some basic properties are added here:
- llvm.invariant(true) is dead.
- llvm.invariant(false) is unreachable (this directly corresponds to the
documented behavior of MSVC's __assume(0)), so is llvm.invariant(undef).
The intrinsic is tagged as writing arbitrarily, in order to maintain control
dependencies. BasicAA has been updated, however, to return NoModRef for any
particular location-based query so that we don't unnecessarily block code
motion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213973 91177308-0d34-0410-b5e6-96231b3b80d8
This functionality is currently turned off by default.
Part of the motivation for introducing scoped-noalias metadata is to enable the
preservation of noalias parameter attribute information after inlining.
Sometimes this can be inferred from the code in the caller after inlining, but
often we simply lose valuable information.
The overall process if fairly simple:
1. Create a new unqiue scope domain.
2. For each (used) noalias parameter, create a new alias scope.
3. For each pointer, collect the underlying objects. Add a noalias scope for
each noalias parameter from which we're not derived (and has not been
captured prior to that point).
4. Add an alias.scope for each noalias parameter from which we might be
derived (or has been captured before that point).
Note that the capture checks apply only if one of the underlying objects is not
an identified function-local object.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213949 91177308-0d34-0410-b5e6-96231b3b80d8
In the process of fixing the noalias parameter -> metadata conversion process
that will take place during inlining (which will be committed soon, but not
turned on by default), I have come to realize that the semantics provided by
yesterday's commit are not really what we want. Here's why:
void foo(noalias a, noalias b, noalias c, bool x) {
*q = x ? a : b;
*c = *q;
}
Generically, we know that *c does not alias with *a and with *b (so there is an
'and' in what we know we're not), and we know that *q might be derived from *a
or from *b (so there is an 'or' in what we know that we are). So we do not want
the semantics currently, where any noalias scope matching any alias.scope
causes a NoAlias return. What we want to know is that the noalias scopes form a
superset of the alias.scope list (meaning that all the things we know we're not
is a superset of all of things the other instruction might be).
Making that change, however, introduces a composibility problem. If we inline
once, adding the noalias metadata, and then inline again adding more, and we
append new scopes onto the noalias and alias.scope lists each time. But, this
means that we could change what was a NoAlias result previously into a MayAlias
result because we appended an additional scope onto one of the alias.scope
lists. So, instead of giving scopes the ability to have parents (which I had
borrowed from the TBAA implementation, but seems increasingly unlikely to be
useful in practice), I've given them domains. The subset/superset condition now
applies within each domain independently, and we only need it to hold in one
domain. Each time we inline, we add the new scopes in a new scope domain, and
everything now composes nicely. In addition, this simplifies the
implementation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213948 91177308-0d34-0410-b5e6-96231b3b80d8
This commit adds scoped noalias metadata. The primary motivations for this
feature are:
1. To preserve noalias function attribute information when inlining
2. To provide the ability to model block-scope C99 restrict pointers
Neither of these two abilities are added here, only the necessary
infrastructure. In fact, there should be no change to existing functionality,
only the addition of new features. The logic that converts noalias function
parameters into this metadata during inlining will come in a follow-up commit.
What is added here is the ability to generally specify noalias memory-access
sets. Regarding the metadata, alias-analysis scopes are defined similar to TBAA
nodes:
!scope0 = metadata !{ metadata !"scope of foo()" }
!scope1 = metadata !{ metadata !"scope 1", metadata !scope0 }
!scope2 = metadata !{ metadata !"scope 2", metadata !scope0 }
!scope3 = metadata !{ metadata !"scope 2.1", metadata !scope2 }
!scope4 = metadata !{ metadata !"scope 2.2", metadata !scope2 }
Loads and stores can be tagged with an alias-analysis scope, and also, with a
noalias tag for a specific scope:
... = load %ptr1, !alias.scope !{ !scope1 }
... = load %ptr2, !alias.scope !{ !scope1, !scope2 }, !noalias !{ !scope1 }
When evaluating an aliasing query, if one of the instructions is associated
with an alias.scope id that is identical to the noalias scope associated with
the other instruction, or is a descendant (in the scope hierarchy) of the
noalias scope associated with the other instruction, then the two memory
accesses are assumed not to alias.
Note that is the first element of the scope metadata is a string, then it can
be combined accross functions and translation units. The string can be replaced
by a self-reference to create globally unqiue scope identifiers.
[Note: This overview is slightly stylized, since the metadata nodes really need
to just be numbers (!0 instead of !scope0), and the scope lists are also global
unnamed metadata.]
Existing noalias metadata in a callee is "cloned" for use by the inlined code.
This is necessary because the aliasing scopes are unique to each call site
(because of possible control dependencies on the aliasing properties). For
example, consider a function: foo(noalias a, noalias b) { *a = *b; } that gets
inlined into bar() { ... if (...) foo(a1, b1); ... if (...) foo(a2, b2); } --
now just because we know that a1 does not alias with b1 at the first call site,
and a2 does not alias with b2 at the second call site, we cannot let inlining
these functons have the metadata imply that a1 does not alias with b2.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213864 91177308-0d34-0410-b5e6-96231b3b80d8
In order to enable the preservation of noalias function parameter information
after inlining, and the representation of block-level __restrict__ pointer
information (etc.), additional kinds of aliasing metadata will be introduced.
This metadata needs to be carried around in AliasAnalysis::Location objects
(and MMOs at the SDAG level), and so we need to generalize the current scheme
(which is hard-coded to just one TBAA MDNode*).
This commit introduces only the necessary refactoring to allow for the
introduction of other aliasing metadata types, but does not actually introduce
any (that will come in a follow-up commit). What it does introduce is a new
AAMDNodes structure to hold all of the aliasing metadata nodes associated with
a particular memory-accessing instruction, and uses that structure instead of
the raw MDNode* in AliasAnalysis::Location, etc.
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213859 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts, "r213024 - Revert r212572 "improve BasicAA CS-CS queries", it
causes PR20303." with a fix for the bug in pr20303. As it turned out, the
relevant code was both wrong and over-conservative (because, as with the code
it replaced, it would return the overall ModRef mask even if just Ref had been
implied by the argument aliasing results). Hopefully, this correctly fixes both
problems.
Thanks to Nick Lewycky for reducing the test case for pr20303 (which I've
cleaned up a little and added in DSE's test directory). The BasicAA test has
also been updated to check for this error.
Original commit message:
BasicAA contains knowledge of certain intrinsics, such as memcpy and memset,
and uses that information to form more-accurate answers to CallSite vs. Loc
ModRef queries. Unfortunately, it did not use this information when answering
CallSite vs. CallSite queries.
Generically, when an intrinsic takes one or more pointers and the intrinsic is
marked only to read/write from its arguments, the offset/size is unknown. As a
result, the generic code that answers CallSite vs. CallSite (and CallSite vs.
Loc) queries in AA uses UnknownSize when forming Locs from an intrinsic's
arguments. While BasicAA's CallSite vs. Loc override could use more-accurate
size information for some intrinsics, it did not do the same for CallSite vs.
CallSite queries.
This change refactors the intrinsic-specific logic in BasicAA into a generic AA
query function: getArgLocation, which is overridden by BasicAA to supply the
intrinsic-specific knowledge, and used by AA's generic implementation. This
allows the intrinsic-specific knowledge to be used by both CallSite vs. Loc and
CallSite vs. CallSite queries, and simplifies the BasicAA implementation.
Currently, only one function, Mac's memset_pattern16, is handled by BasicAA
(all the rest are intrinsics). As a side-effect of this refactoring, BasicAA's
getModRefBehavior override now also returns OnlyAccessesArgumentPointees for
this function (which is an improvement).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213219 91177308-0d34-0410-b5e6-96231b3b80d8
BasicAA contains knowledge of certain intrinsics, such as memcpy and memset,
and uses that information to form more-accurate answers to CallSite vs. Loc
ModRef queries. Unfortunately, it did not use this information when answering
CallSite vs. CallSite queries.
Generically, when an intrinsic takes one or more pointers and the intrinsic is
marked only to read/write from its arguments, the offset/size is unknown. As a
result, the generic code that answers CallSite vs. CallSite (and CallSite vs.
Loc) queries in AA uses UnknownSize when forming Locs from an intrinsic's
arguments. While BasicAA's CallSite vs. Loc override could use more-accurate
size information for some intrinsics, it did not do the same for CallSite vs.
CallSite queries.
This change refactors the intrinsic-specific logic in BasicAA into a generic AA
query function: getArgLocation, which is overridden by BasicAA to supply the
intrinsic-specific knowledge, and used by AA's generic implementation. This
allows the intrinsic-specific knowledge to be used by both CallSite vs. Loc and
CallSite vs. CallSite queries, and simplifies the BasicAA implementation.
Currently, only one function, Mac's memset_pattern16, is handled by BasicAA
(all the rest are intrinsics). As a side-effect of this refactoring, BasicAA's
getModRefBehavior override now also returns OnlyAccessesArgumentPointees for
this function (which is an improvement).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212572 91177308-0d34-0410-b5e6-96231b3b80d8
This patch:
1) Improves the cost model for x86 alternate shuffles (originally
added at revision 211339);
2) Teaches the Cost Model Analysis pass how to analyze alternate shuffles.
Alternate shuffles are a special kind of blend; on x86, we can often
easily lowered alternate shuffled into single blend
instruction (depending on the subtarget features).
The existing cost model didn't take into account subtarget features.
Also, it had a couple of "dead" entries for vector types that are never
legal (example: on x86 types v2i32 and v2f32 are not legal; those are
always either promoted or widened to 128-bit vector types).
The new x86 cost model takes into account what target features we have
before returning the shuffle cost (i.e. the number of instructions
after the blend is lowered/expanded).
This patch also teaches the Cost Model Analysis how to identify and analyze
alternate shuffles (i.e. 'SK_Alternate' shufflevector instructions):
- added function 'isAlternateVectorMask';
- added some logic to check if an instruction is a alternate shuffle and, in
case, call the target specific TTI to get the corresponding shuffle cost;
- added a test to verify the cost model analysis on alternate shuffles.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212296 91177308-0d34-0410-b5e6-96231b3b80d8