4 Commits

Author SHA1 Message Date
Bill Seurer
8dcc5c0996 [PowerPC]Update Power VSX test cases to also test fast-isel
Update of some of the VSX test cases for Power to check fast-isel codegen as well as the regular codegen.

http://reviews.llvm.org/D6357


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223509 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-05 20:32:05 +00:00
Bill Schmidt
fc22bfd921 [PowerPC] Add vec_vsx_ld and vec_vsx_st intrinsics
This patch enables the vec_vsx_ld and vec_vsx_st intrinsics for
PowerPC, which provide programmer access to the lxvd2x, lxvw4x,
stxvd2x, and stxvw4x instructions.

New LLVM intrinsics are provided to represent these four instructions
in IntrinsicsPowerPC.td.  These are patterned after the similar
intrinsics for lvx and stvx (Altivec).  In PPCInstrVSX.td, these
intrinsics are tied to the code gen patterns, with additional patterns
to allow plain vanilla loads and stores to still generate these
instructions.

At -O1 and higher the intrinsics are immediately converted to loads
and stores in InstCombineCalls.cpp.  This will open up more
optimization opportunities while still allowing the correct
instructions to be generated.  (Similar code exists for aligned
Altivec loads and stores.)

The new intrinsics are added to the code that checks for consecutive
loads and stores in PPCISelLowering.cpp, as well as to
PPCTargetLowering::getTgtMemIntrinsic().

There's a new test to verify the correct instructions are generated.
The loads and stores tend to be reordered, so the test just counts
their number.  It runs at -O2, as it's not very effective to test this
at -O0, when many unnecessary loads and stores are generated.

I ended up having to modify vsx-fma-m.ll.  It turns out this test case
is slightly unreliable, but I don't know a good way to prevent
problems with it.  The xvmaddmdp instructions read and write the same
register, which is one of the multiplicands.  Commutativity allows
either to be chosen.  If the FMAs are reordered differently than
expected by the test, the register assignment can be different as a
result.  Hopefully this doesn't change often.

There is a companion patch for Clang.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221767 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-12 04:19:40 +00:00
Hal Finkel
44b2b9dc1a [PowerPC] Add subregister classes for f64 VSX values
We had stored both f64 values and v2f64, etc. values in the VSX registers. This
worked, but was suboptimal because we would always spill 16-byte values even
through we almost always had scalar 8-byte values. This resulted in an
increase in stack-size use, extra memory bandwidth, etc. To fix this, I've
added 64-bit subregisters of the Altivec registers, and combined those with the
existing scalar floating-point registers to form a class of VSX scalar
floating-point registers. The ABI code has also been enhanced to use this
register class and some other necessary improvements have been made.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205075 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-29 05:29:01 +00:00
Hal Finkel
6a0f060f64 [PowerPC] Select between VSX A-type and M-type FMA instructions just before RA
The VSX instruction set has two types of FMA instructions: A-type (where the
addend is taken from the output register) and M-type (where one of the product
operands is taken from the output register). This adds a small pass that runs
just after MI scheduling (and, thus, just before register allocation) that
mutates A-type instructions (that are created during isel) into M-type
instructions when:

 1. This will eliminate an otherwise-necessary copy of the addend

 2. One of the product operands is killed by the instruction

The "right" moment to make this decision is in between scheduling and register
allocation, because only there do we know whether or not one of the product
operands is killed by any particular instruction. Unfortunately, this also
makes the implementation somewhat complicated, because the MIs are not in SSA
form and we need to preserve the LiveIntervals analysis.

As a simple example, if we have:

%vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9
%vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16,
                        %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16
  ...
  %vreg9<def,tied1> = XSMADDADP %vreg9<tied0>, %vreg17, %vreg19,
                        %RM<imp-use>; VSLRC:%vreg9,%vreg17,%vreg19
  ...

We can eliminate the copy by changing from the A-type to the
M-type instruction. This means:

  %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16,
                        %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16

is replaced by:

  %vreg16<def,tied1> = XSMADDMDP %vreg16<tied0>, %vreg18, %vreg9,
                        %RM<imp-use>; VSLRC:%vreg16,%vreg18,%vreg9

and we remove: %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204768 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-25 23:29:21 +00:00