which have successfully round-tripped through the combine phase, and use
this to ensure all operands to DAG nodes are visited by the combiner,
even if they are only added during the combine phase.
This is critical to have the combiner reach nodes that are *introduced*
during combining. Previously these would sometimes be visited and
sometimes not be visited based on whether they happened to end up on the
worklist or not. Now we always run them through the combiner.
This fixes quite a few bad codegen test cases lurking in the suite while
also being more principled. Among these, the TLS codegeneration is
particularly exciting for programs that have this in the critical path
like TSan-instrumented binaries (although I think they engineer to use
a different TLS that is faster anyways).
I've tried to check for compile-time regressions here by running llc
over a merged (but not LTO-ed) clang bitcode file and observed at most
a 3% slowdown in llc. Given that this is essentially a worst case (none
of opt or clang are running at this phase) I think this is tolerable.
The actual LTO case should be even less costly, and the cost in normal
compilation should be negligible.
With this combining logic, it is possible to re-legalize as we combine
which is necessary to implement PSHUFB formation on x86 as
a post-legalize DAG combine (my ultimate goal).
Differential Revision: http://reviews.llvm.org/D4638
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213898 91177308-0d34-0410-b5e6-96231b3b80d8
mode.
This also runs the test in that mode which would reproduce the crash.
What I love is that *every single FIXME* in the test is addressed by
switching to widening.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212254 91177308-0d34-0410-b5e6-96231b3b80d8
This patch teaches the backend how to simplify/canonicalize dag node
sequences normally introduced by the backend when promoting certain dag nodes
with illegal vector type.
This patch adds two new combine rules:
1) fold (shuffle (bitcast (BINOP A, B)), Undef, <Mask>) ->
(shuffle (BINOP (bitcast A), (bitcast B)), Undef, <Mask>)
2) fold (BINOP (shuffle (A, Undef, <Mask>)), (shuffle (B, Undef, <Mask>))) ->
(shuffle (BINOP A, B), Undef, <Mask>).
Both rules are only triggered on the type-legalized DAG.
In particular, rule 1. is a target specific combine rule that attempts
to sink a bitconvert into the operands of a binary operation.
Rule 2. is a target independet rule that attempts to move a shuffle
immediately after a binary operation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209930 91177308-0d34-0410-b5e6-96231b3b80d8
This patch teaches the x86 backend how to efficiently lower ISD::BITCAST dag
nodes from MVT::f64 to MVT::v4i16 (and vice versa), and from MVT::f64 to
MVT::v8i8 (and vice versa).
This patch extends the logic from revision 208107 to also handle MVT::v4i16
and MVT::v8i8. Also, this patch correctly propagates Undef values when
performing the widening of a vector (example: when widening from v2i32 to
v4i32, the upper 64bits of the resulting vector are 'undef').
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209451 91177308-0d34-0410-b5e6-96231b3b80d8