23 Commits

Author SHA1 Message Date
Chandler Carruth
afe75172b1 [x86] Teach the new vector shuffle lowering about VBROADCAST and
VPBROADCAST.

This has the somewhat expected pervasive impact. I don't know why
I forgot about this. Everything seems good with lots of significant
improvements in the tests.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218724 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-01 00:41:21 +00:00
Chandler Carruth
3a926b9b5c [x86] Update the exact FileCheck syntax of the 256-bit and 512-bit
shuffle tests to match that used in the script I posted and now used
consistently in 128-bit tests.

Nothing interesting changing here, just using the label name as the
FileCheck label and a slightly more general comment marker consumption
strategy.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218709 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-30 22:04:45 +00:00
Chandler Carruth
7929a210d5 [x86] In the new vector shuffle lowering, when trying to do another
layer of tie-breaking sorting, it really helps to check that you're in
a tie first. =] Otherwise the whole thing cycles infinitely. Test case
added, another one found through fuzz testing.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218523 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-26 17:24:26 +00:00
Chandler Carruth
7164a4ae0a [x86] Fix a large collection of bugs that crept in as I fleshed out the
AVX support.

New test cases included. Note that none of the existing test cases
covered these buggy code paths. =/ Also, it is clear from this that
SHUFPS and SHUFPD are the most bug prone shuffle instructions in x86. =[

These were all detected by fuzz-testing. (I <3 fuzz testing.)

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218522 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-26 17:11:02 +00:00
Chandler Carruth
4b667ee436 [x86] Teach the new vector shuffle lowering to use AVX2 instructions for
v4f64 and v8f32 shuffles when they are lane-crossing. We have fully
general lane-crossing permutation functions in AVX2 that make this easy.

Part of this also changes exactly when and how these vectors are split
up when we don't have AVX2. This isn't always a win but it usually is
a win, so on the balance I think its better. The primary regressions are
all things that just need to be fixed anyways such as modeling when
a blend can be completely accomplished via VINSERTF128, etc.

Also, this highlights one of the few remaining big features: we do
a really poor job of inserting elements into AVX registers efficiently.

This completes almost all of the big tricks I have in mind for AVX2. The
only things left that I plan to add:

1) element insertion smarts
2) palignr and other fairly specialized lowerings when they happen to
   apply

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218449 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-25 11:03:55 +00:00
Chandler Carruth
05901d80ba [x86] Teach the new vector shuffle lowering a fancier way to lower
256-bit vectors with lane-crossing.

Rather than immediately decomposing to 128-bit vectors, try flipping the
256-bit vector lanes, shuffling them and blending them together. This
reduces our worst case shuffle by a pretty significant margin across the
board.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218446 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-25 10:21:15 +00:00
Chandler Carruth
2e8d2c727c [x86] Fix an oversight in the v8i32 path of the new vector shuffle
lowering where it only used the mask of the low 128-bit lane rather than
the entire mask.

This allows the new lowering to correctly match the unpack patterns for
v8i32 vectors.

For reference, the reason that we check for the the entire mask rather
than checking the repeated mask is because the repeated masks don't
abide by all of the invariants of normal masks. As a consequence, it is
safer to use the full mask with functions like the generic equivalence
test.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218442 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-25 04:10:27 +00:00
Chandler Carruth
10cd8098a7 [x86] Teach the instruction lowering to add comments describing constant
pool data being loaded into a vector register.

The comments take the form of:

  # ymm0 = [a,b,c,d,...]
  # xmm1 = <x,y,z...>

The []s are used for generic sequential data and the <>s are used for
specifically ConstantVector loads. Undef elements are printed as the
letter 'u', integers in decimal, and floating point values as floating
point values. Suggestions on improving the formatting or other aspects
of the display are very welcome.

My primary use case for this is to be able to FileCheck test masks
passed to vector shuffle instructions in-register. It isn't fantastic
for that (no decoding special zeroing semantics or other tricks), but it
at least puts the mask onto an instruction line that could reasonably be
checked. I've updated many of the new vector shuffle lowering tests to
leverage this in their test cases so that we're actually checking the
shuffle masks remain as expected.

Before implementing this, I tried a *bunch* of different approaches.
I looked into teaching the MCInstLower code to scan up the basic block
and find a definition of a register used in a shuffle instruction and
then decode that, but this seems incredibly brittle and complex.
I talked to Hal a lot about the "right" way to do this: attach the raw
shuffle mask to the instruction itself in some form of unencoded
operands, and then use that to emit the comments. I still think that's
the optimal solution here, but it proved to be beyond what I'm up for
here. In particular, it seems likely best done by completing the
plumbing of metadata through these layers and attaching the shuffle mask
in metadata which could have fully automatic dropping when encoding an
actual instruction.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218377 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-24 09:39:41 +00:00
Chandler Carruth
6717f9d907 [x86] Teach the new vector shuffle lowering to lower v8i32 shuffles with
the native AVX2 instructions.

Note that the test case is really frustrating here because VPERMD
requires the mask to be in the register input and we don't produce
a comment looking through that to the constant pool. I'm going to
attempt to improve this in a subsequent commit, but not sure if I will
succeed.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218347 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-24 01:24:44 +00:00
Chandler Carruth
30ce74b5e3 [x86] Teach the new vector shuffle lowering to lower v4i64 vector
shuffles using the AVX2 instructions. This is the first step of cutting
in real AVX2 support.

Note that I have spotted at least one bug in the test cases already, but
I suspect it was already present and just is getting surfaced. Will
investigate next.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218338 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-23 22:39:02 +00:00
Chandler Carruth
4850be49a3 [x86] Teach the vector comment parsing and printing to correctly handle
undef in the shuffle mask. This shows up when we're printing comments
during lowering and we still have an IR-level constant hanging around
that models undef.

A nice consequence of this is *much* prettier test cases where the undef
lanes actually show up as undef rather than as a particular set of
values. This also allows us to print shuffle comments in cases that use
undef such as the recently added variable VPERMILPS lowering. Now those
test cases have nice shuffle comments attached with their details.

The shuffle lowering for PSHUFB has been augmented to use undef, and the
shuffle combining has been augmented to comprehend it.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218301 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-23 11:15:19 +00:00
Chandler Carruth
8f637786d8 [x86] Teach the AVX1 path of the new vector shuffle lowering one more
trick that I missed.

VPERMILPS has a non-immediate memory operand mode that allows it to do
asymetric shuffles in the two 128-bit lanes. Use this rather than two
shuffles and a blend.

However, it turns out the variable shuffle path to VPERMILPS (and
VPERMILPD, although that one offers no functional differenc from the
immediate operand other than variability) wasn't even plumbed through
codegen. Do such plumbing so that we can reasonably emit
a variable-masked VPERMILP instruction. Also plumb basic comment parsing
and printing through so that the tests are reasonable.

There are still a few tests which don't show the shuffle pattern. These
are tests with undef lanes. I'll teach the shuffle decoding and printing
to handle undef mask entries in a follow-up. I've looked at the masks
and they seem reasonable.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218300 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-23 10:08:29 +00:00
Chandler Carruth
56c7cfe41f [x86] Introduce tests covering the gamut of 256-bit vector shuffling.
These are just test cases, no actual code yet. This establishes the
baseline fallback strategy we're starting from on AVX2 and the expected
lowering we use on AVX1.

Also, these test cases are very much generated. I've manually crafted
the specific pattern set that I'm hoping will be useful at exercising
the lowering code, but I've not (and could not) manually verify *all* of
these. I've spot checked and they seem legit to me.

As with the rest of vector shuffling, at a certain point the only really
useful way to check the correctness of this stuff is through fuzz
testing.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218267 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-22 20:25:08 +00:00
Chandler Carruth
37bb4b0365 [x86] Teach the new vector shuffle lowering how to cleverly lower single
input v8f32 shuffles which are not 128-bit lane crossing but have
different shuffle patterns in the low and high lanes. This removes most
of the extract/insert traffic that was unnecessary and is particularly
good at lowering cases where only one of the two lanes is shuffled at
all.

I've also added a collection of test cases with undef lanes because this
lowering is somewhat more sensitive to undef lanes than others.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218226 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-21 23:46:13 +00:00
Chandler Carruth
7da57cf5b4 [x86] Add a bunch of test cases where we have different shuffle patterns
in the high and low 128-bit lanes of a v8f32 vector.

No functionality change yet, but wanted to set up the baseline for my
next patch which will make these quite a bit better. =]

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218224 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-21 23:32:42 +00:00
Chandler Carruth
974542d7d8 [x86] Teach the new vector shuffle lowering to re-use the SHUFPS
lowering when it can use a symmetric SHUFPS across both 128-bit lanes.

This required making the SHUFPS lowering tolerant of other vector types,
and adjusting our canonicalization to canonicalize harder.

This is the last of the clever uses of symmetry I've thought of for
v8f32. The rest of the tricks I'm aware of here are to work around
assymetry in the mask.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218216 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-21 13:35:14 +00:00
Chandler Carruth
6ef31b0079 [x86] Teach the new vector shuffle lowering how to lower to UNPCKLPS and
UNPCKHPS with AVX vectors by recognizing those patterns when they are
repeated for both 128-bit lanes.

With this, we now generate the exact same (really nice) code for
Quentin's avx_test_case.ll which was the most significant regression
reported for the new shuffle lowering. In fact, I'm out of specific test
cases for AVX lowering, the rest were AVX2 I think. However, there are
a bunch of pretty obvious remaining things to improve with AVX...

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218213 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-21 12:20:44 +00:00
Chandler Carruth
7a94357b04 [x86] Add test cases for UNPCK instructions with v8f32 AVX vectors in
preparation for enhancing their support in the new vector shuffle
lowering.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218212 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-21 12:13:11 +00:00
Chandler Carruth
7922d3e39a [x86] Begin teaching the new vector shuffle lowering among the most
important bits of cleverness: to detect and lower repeated shuffle
patterns between the two 128-bit lanes with a single instruction.

This patch just teaches it how to lower single-input shuffles that fit
this model using VPERMILPS. =] There is more that needs to happen here.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218211 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-21 12:01:19 +00:00
Chandler Carruth
e4cb9d5f25 [x86] Regenerate this test case now that I've improved my script for
generating the test cases to format things more consistently and
actually catch all the operand sequences that should be elided in favor
of the asm comments. No actual changes here.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218210 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-21 11:51:33 +00:00
Chandler Carruth
291140b112 [x86] Teach the new vector shuffle lowering the first step toward more
actual support for complex AVX shuffling tricks. We can do independent
blends of the low and high 128-bit lanes of an avx vector, so shuffle
the inputs into place and then do the blend at 256 bits. This will in
many cases remove one blend instruction.

The next step is to permute the low and high halves in-place rather than
extracting them and re-inserting them.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218202 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-21 09:35:22 +00:00
Chandler Carruth
1ca1e33c3a [x86] Add some more test cases covering specific blend patterns.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218200 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-21 09:01:26 +00:00
Chandler Carruth
b7ef7f97a8 [x86] Add the beginnings of some tests for our v8f32 shuffle lowering
under AVX.

This really just documents the current state of the world. I'm going to
try to flesh it out to cover any test cases I plan to improve prior to
improving them so that the delta made by changes is actually visible to
code reviewers.

This is made easier by the fact that I now have a script to automate the
process of producing test cases including the check lines. =]

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218199 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-21 08:49:27 +00:00