specified in the same file that the library itself is created. This is
more idiomatic for CMake builds, and also allows us to correctly specify
dependencies that are missed due to bugs in the GenLibDeps perl script,
or change from compiler to compiler. On Linux, this returns CMake to
a place where it can relably rebuild several targets of LLVM.
I have tried not to change the dependencies from the ones in the current
auto-generated file. The only places I've really diverged are in places
where I was seeing link failures, and added a dependency. The goal of
this patch is not to start changing the dependencies, merely to move
them into the correct location, and an explicit form that we can control
and change when necessary.
This also removes a serialization point in the build because we don't
have to scan all the libraries before we begin building various tools.
We no longer have a step of the build that regenerates a file inside the
source tree. A few other associated cleanups fall out of this.
This isn't really finished yet though. After talking to dgregor he urged
switching to a single CMake macro to construct libraries with both
sources and dependencies in the arguments. Migrating from the two macros
to that style will be a follow-up patch.
Also, llvm-config is still generated with GenLibDeps.pl, which means it
still has slightly buggy dependencies. The internal CMake
'llvm-config-like' macro uses the correct explicitly specified
dependencies however. A future patch will switch llvm-config generation
(when using CMake) to be based on these deps as well.
This may well break Windows. I'm getting a machine set up now to dig
into any failures there. If anyone can chime in with problems they see
or ideas of how to solve them for Windows, much appreciated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136433 91177308-0d34-0410-b5e6-96231b3b80d8
update a callGraph when performing the common operation of splicing the body to
a new function and updating all callers (such as via RAUW).
No users yet, though this is intended for DeadArgumentElimination as part of
PR8887.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122728 91177308-0d34-0410-b5e6-96231b3b80d8
must be called in the pass's constructor. This function uses static dependency declarations to recursively initialize
the pass's dependencies.
Clients that only create passes through the createFooPass() APIs will require no changes. Clients that want to use the
CommandLine options for passes will need to manually call the appropriate initialization functions in PassInitialization.h
before parsing commandline arguments.
I have tested this with all standard configurations of clang and llvm-gcc on Darwin. It is possible that there are problems
with the static dependencies that will only be visible with non-standard options. If you encounter any crash in pass
registration/creation, please send the testcase to me directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116820 91177308-0d34-0410-b5e6-96231b3b80d8
perform initialization without static constructors AND without explicit initialization
by the client. For the moment, passes are required to initialize both their
(potential) dependencies and any passes they preserve. I hope to be able to relax
the latter requirement in the future.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@116334 91177308-0d34-0410-b5e6-96231b3b80d8
isn't a good level of abstraction for memdep. Instead, generalize
AliasAnalysis::alias and related interfaces with a new Location
class for describing a memory location. For now, this is the same
Pointer and Size as before, plus an additional field for a TBAA tag.
Also, introduce a fixed MD_tbaa metadata tag kind.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113858 91177308-0d34-0410-b5e6-96231b3b80d8
a Pass abstraction, since that's the level it's actually used at.
Rename Pass' dumpPassStructure to dumpPass.
This eliminates an awkward use of getAsPass() to convert a PMDataManager*
into a Pass* just to permit a dumpPassStructure call.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111199 91177308-0d34-0410-b5e6-96231b3b80d8
eliminate several const_casts.
Make CallSite implicitly convertible to ImmutableCallSite.
Rename the getModRefBehavior for intrinsic IDs to
getIntrinsicModRefBehavior to avoid overload ambiguity with CallSite,
which happens to be implicitly convertible to bool.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@110155 91177308-0d34-0410-b5e6-96231b3b80d8
would cause them to fail the way they are, but none of the other intervening patches seem likely either.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108818 91177308-0d34-0410-b5e6-96231b3b80d8
superclass (StaticPassInfo) and a constructor-ful subclass (PassInfo).", it is
breaking teh everything.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108805 91177308-0d34-0410-b5e6-96231b3b80d8
encapsulation to force the users of these classes to know about the internal
data structure of the Operands structure. It also can lead to errors, like in
the MSIL writer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105539 91177308-0d34-0410-b5e6-96231b3b80d8
if an indirect call site was removed and a direct one was added, not
just if an indirect call site was modified to be direct.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102830 91177308-0d34-0410-b5e6-96231b3b80d8
that can have a big effect :). The first is to enable the
iterative SCC passmanager juice that kicks in when the
scc passmgr detects that a function pass has devirtualized
a call. In this case, it will rerun all the passes it
manages on the SCC, up to the iteration count limit (4). This
is useful because a function pass may devirualize a call, and
we want the inliner to inline it, or pruneeh to infer stuff
about it, etc.
The second patch is to add *all* call sites to the
DevirtualizedCalls list the inliner uses. This list is
about to get renamed, but the jist of this is that the
inliner now reconsiders *all* inlined call sites as candidates
for further inlining. The intuition is this that in cases
like this:
f() { g(1); } g(int x) { h(x); }
We analyze this bottom up, and may decide that it isn't
profitable to inline H into G. Next step, we decide that it is
profitable to inline G into F, and do so, which means that F
now calls H. Even though the call from G -> H may not have been
profitable to inline, the call from F -> H may be (in this case
because a constant allows folding etc).
In my spot checks, this doesn't have a big impact on code. For
example, the LLC output for 252.eon grew from 0.02% (from
317252 to 317308) and 176.gcc actually shrunk by .3% (from 1525612
to 1520964 bytes). 252.eon never iterated in the SCC Passmgr,
176.gcc iterated at most 1 time.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@102823 91177308-0d34-0410-b5e6-96231b3b80d8