Someone may want to do something crazy, like replace these objects if they
change or something.
No functionality change intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184175 91177308-0d34-0410-b5e6-96231b3b80d8
To add a frame now there is a dedicated addFrameMove which also takes
care of constructing the move itself.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181657 91177308-0d34-0410-b5e6-96231b3b80d8
We generate a `push' of a random register (%rax) if the stack needs to be
aligned by the size of that register. However, this could mess up compact unwind
generation. In particular, we want to still generate compact unwind in the
presence of this monstrosity.
Check if the push of of the %rax/%eax register. If it is and it's marked with
the `FrameSetup' flag, then we can generate a compact unwind encoding for the
function only if the push is the last FrameSetup instruction.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181540 91177308-0d34-0410-b5e6-96231b3b80d8
The compact unwind registers were defined in two different
places. It's better just to place them in the function that uses them
and specify that this is a 64-bit or 32-bit machine.
No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181529 91177308-0d34-0410-b5e6-96231b3b80d8
to TargetFrameLowering, where it belongs. Incidentally, this allows us
to delete some duplicated (and slightly different!) code in TRI.
There are potentially other layering problems that can be cleaned up
as a result, or in a similar manner.
The refactoring was OK'd by Anton Korobeynikov on llvmdev.
Note: this touches the target interfaces, so out-of-tree targets may
be affected.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175788 91177308-0d34-0410-b5e6-96231b3b80d8
If the frame pointer is omitted, and any stack changes occur in the inline
assembly, e.g.: "pusha", then any C local variable or C argument references
will be incorrect.
I pass no judgement on anyone who would do such a thing. ;)
rdar://13218191
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175334 91177308-0d34-0410-b5e6-96231b3b80d8
account. Atoms use LEA for updating SP in prologs/epilogs, and the
exact LEA opcode depends on the data model.
Also reapplying the test case which was added and then reverted
(because of Atom failures), this time specifying explicitly the CPU in
addition to the triple. The test case now checks all variations (data
mode, cpu Atom vs. Core).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174542 91177308-0d34-0410-b5e6-96231b3b80d8
pointer in function prologs/epilogs. The opcodes should depend on the
data model (LP64 vs. ILP32) rather than the architecture bit-ness.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174446 91177308-0d34-0410-b5e6-96231b3b80d8
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
directly.
This is in preparation for removing the use of the 'Attribute' class as a
collection of attributes. That will shift to the AttributeSet class instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171253 91177308-0d34-0410-b5e6-96231b3b80d8
The only way to read the eflags is using push and pop. If we don't
adjust the stack then we run over the first frame index. This is
not something that we want to do, so we have to make sure that
our machine function does not copy the flags. If it does then
we have to emit the prolog that adjusts the stack.
rdar://12896831
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170961 91177308-0d34-0410-b5e6-96231b3b80d8
This function is often used to decorate dangling instructions, so a
context reference is required to allocate memory for the operands.
Also add a corresponding MachineInstrBuilder method.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170797 91177308-0d34-0410-b5e6-96231b3b80d8
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
We use the enums to query whether an Attributes object has that attribute. The
opaque layer is responsible for knowing where that specific attribute is stored.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165488 91177308-0d34-0410-b5e6-96231b3b80d8
a) frame setup instructions define the prologue
b) we shouldn't change our location mid-stream
Add a test to make sure that the stack adjustment stays within
the prologue.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165250 91177308-0d34-0410-b5e6-96231b3b80d8
The hasFnAttr method has been replaced by querying the Attributes explicitly. No
intended functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164725 91177308-0d34-0410-b5e6-96231b3b80d8
It is intended to fix PR11468.
Old prologue and epilogue looked like this:
push %rbp
mov %rsp, %rbp
and $alignment, %rsp
push %r14
push %r15
...
pop %r15
pop %r14
mov %rbp, %rsp
pop %rbp
The problem was to reference the locations of callee-saved registers in exception handling:
locations of callee-saved had to be re-calculated regarding the stack alignment operation. It would
take some effort to implement this in LLVM, as currently MachineLocation can only have the form
"Register + Offset". Funciton prologue and epilogue are now changed to:
push %rbp
mov %rsp, %rbp
push %14
push %15
and $alignment, %rsp
...
lea -$size_of_saved_registers(%rbp), %rsp
pop %r15
pop %r14
pop %rbp
Reviewed by Chad Rosier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160248 91177308-0d34-0410-b5e6-96231b3b80d8
X86MachineFunctionInfo as this is currently only used by X86. If this ever
becomes an issue on another arch (e.g., ARM) then we can hoist it back out.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160009 91177308-0d34-0410-b5e6-96231b3b80d8
X86. Basically, this is a reapplication of r158087 with a few fixes.
Specifically, (1) the stack pointer is restored from the base pointer before
popping callee-saved registers and (2) in obscure cases (see comments in patch)
we must cache the value of the original stack adjustment in the prologue and
apply it in the epilogue.
rdar://11496434
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160002 91177308-0d34-0410-b5e6-96231b3b80d8
Function argument and return value registers aren't part of the
encoding, so they should be implicit operands.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159728 91177308-0d34-0410-b5e6-96231b3b80d8
The code in X86TargetLowering::LowerEH_RETURN() assumes that a frame
pointer exists, but the frame pointer was forced by the presence of
llvm.eh.unwind.init which isn't guaranteed.
If llvm.eh.unwind.init is actually required in functions calling
eh.return (is it?), we should diagnose that instead of emitting bad
machine code.
This should fix the dragonegg-x86_64-linux-gcc-4.6-test bot.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158961 91177308-0d34-0410-b5e6-96231b3b80d8
This patch causes problems when both dynamic stack realignment and
dynamic allocas combine in the same function. With this patch, we no
longer build the epilog correctly, and silently restore registers from
the wrong position in the stack.
Thanks to Matt for tracking this down, and getting at least an initial
test case to Chad. I'm going to try to check a variation of that test
case in so we can easily track the fixes required.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@158654 91177308-0d34-0410-b5e6-96231b3b80d8