It miscompiles some code and a reduced test case has been sent to the
author.
This reverts commit r240257.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242373 91177308-0d34-0410-b5e6-96231b3b80d8
The testcase failed on non X86 targets, because I forgot to pass the
'-march=x86-64' option into llc for one of the X86 specific tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242370 91177308-0d34-0410-b5e6-96231b3b80d8
pairs for 32-bit immediates.
This change is needed to avoid emitting movt/movw pairs when doing LTO
and do so on a per-function basis.
Out-of-tree projects currently using cl::opt option -arm-use-movt=0 or
false to avoid emitting movt/movw pairs should make changes to add
subtarget feature "+no-movt" (see the changes made to clang in r242368).
rdar://problem/21529937
Differential Revision: http://reviews.llvm.org/D11026
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242369 91177308-0d34-0410-b5e6-96231b3b80d8
The jump table info is serialized using a YAML mapping that contains its kind
and a YAML sequence of jump table entries. A jump table entry is a YAML mapping
that has an ID and an inline YAML sequence of machine basic block references.
The testcase 'CodeGen/MIR/X86/jump-table-info.mir' doesn't have any instructions
because one of them contains a jump table index operand. The jump table index
operands will be serialized in a follow up patch, and the appropriate
instructions will be added to this testcase.
Reviewers: Duncan P. N. Exon Smith
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242357 91177308-0d34-0410-b5e6-96231b3b80d8
This commit serializes the references to the named LLVM alloca instructions from
the stack objects in the machine frame info. This commit adds a field 'Name' to
the struct 'yaml::MachineStackObject'. This new field is used to store the name
of the alloca instruction when the alloca is present and when it has a name.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242339 91177308-0d34-0410-b5e6-96231b3b80d8
emit debug info, according to the preferences of the different
debuggers used on various targets.
Darwin and FreeBSD default to tuning for LLDB; PS4 defaults to tuning for
the SCE (Sony Computer Entertainment) debugger. All others default to GDB.
Differential Revision: http://reviews.llvm.org/D8506
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242338 91177308-0d34-0410-b5e6-96231b3b80d8
Self-referential constants containing references to a merged function
no longer cause the MergeFunctions pass to infinite loop. Also adds a
reproduction IR which would otherwise fail, which was isolated from a similar
issue in Chromium.
Author: jrkoenig
Reviewers: nlewycky, jfb
Subscribers: llvm-commits, nlewycky, jfb
Differential Revision: http://reviews.llvm.org/D11208
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242337 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch allows phi nodes like
%x = phi [ %incptr, ... ] [ %var, ... ]
%incptr = getelementptr %x, 1
to be analyzed by BasicAliasAnalysis.
In aliasPHI, we can detect incoming values that are recursive GEPs with a
constant offset. Instead of trying to analyze a recursive GEP (and failing),
we now ignore it and instead set the size of the memory referenced by
the PHINode to UnknownSize. This represents all the possible memory
locations the pointer represented by the PHINode could be advanced to
by the GEP.
For now, this new behavior is turned off by default to allow debugging of
performance degradations seen with SPEC/x86 and Hexagon benchmarks.
The flag -basicaa-recphi turns it on.
Reviewers: hfinkel, sanjoy
Subscribers: tobiasvk_caf, sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D10368
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242320 91177308-0d34-0410-b5e6-96231b3b80d8
This is a necessary prerequisite for bootstrapping the emission
of debug info inside modules.
- Adds a FlagExternalTypeRef to DICompositeType.
External types must have a unique identifier.
- External type references are emitted using a forward declaration
with a DW_AT_signature([DW_FORM_ref_sig8]) based on the UID.
http://reviews.llvm.org/D9612
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242302 91177308-0d34-0410-b5e6-96231b3b80d8
These were the cause of a verifier error when building 7zip with
-verify-machineinstrs. Running 'make check' with the verifier
triggered the same error on the test here so i've updated the test
to run the verifier on one of its runs instead of adding a new one.
While looking at this code, there was a stale comment that these
instructions were only used for disassembly. This probably used to
be the case, but they are now used in the 'ARM load / store optimization pass' too.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242300 91177308-0d34-0410-b5e6-96231b3b80d8
- Teaches the ValueTracker in the PeepholeOptimizer to look through PHI
instructions.
- Add findNextSourceAndRewritePHI method to lookup into multiple sources
returnted by the ValueTracker and rewrite PHIs with new sources.
With these changes we can find more register sources and rewrite more
copies to allow coaslescing of bitcast instructions. Hence, we eliminate
unnecessary VR64 <-> GR64 copies in x86, but it could be extended to
other archs by marking "isBitcast" on target specific instructions. The
x86 example follows:
A:
psllq %mm1, %mm0
movd %mm0, %r9
jmp C
B:
por %mm1, %mm0
movd %mm0, %r9
jmp C
C:
movd %r9, %mm0
pshufw $238, %mm0, %mm0
Becomes:
A:
psllq %mm1, %mm0
jmp C
B:
por %mm1, %mm0
jmp C
C:
pshufw $238, %mm0, %mm0
Differential Revision: http://reviews.llvm.org/D11197
rdar://problem/20404526
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242295 91177308-0d34-0410-b5e6-96231b3b80d8
Current implementation handles unordered comparison poorly in soft-float mode.
Consider (a ULE b) which is a <= b. It is lowered to (ledf2(a, b) <= 0 || unorddf2(a, b) != 0) (in general). We can do better job by lowering it to (__gtdf2(a, b) <= 0).
Such replacement is true for other CMP's (ult, ugt, uge). In general, we just call same function as for ordered case but negate comparison against zero.
Differential Revision: http://reviews.llvm.org/D10804
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242280 91177308-0d34-0410-b5e6-96231b3b80d8
This is a direct port of the code from the X86 backend (r239486/r240361), which
uses the MachineCombiner to reassociate (floating-point) adds/muls to increase
ILP, to the PowerPC backend. The rationale is the same.
There is a lot of copy-and-paste here between the X86 code and the PowerPC
code, and we should extract at least some of this into CodeGen somewhere.
However, I don't want to do that until this code is enhanced to handle FMAs as
well. After that, we'll be in a better position to extract the common parts.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242279 91177308-0d34-0410-b5e6-96231b3b80d8
When FixedLenDecoder matches an input bitpattern of form [01]+ with an
instruction bitpattern of form [01?]+ (where 0/1 are static bits and ? are
mixed/variable bits) it passes the input bitpattern to a specific instruction
decoder method which then makes a final decision whether the bitpattern is a
valid instruction or not. This means the decoder must handle all possible
values of the variable bits which sometimes leads to opcode rewrites in the
decoder method when the instructions are not fully orthogonal.
The patch provides a way for the decoder method to say that when it returns
Fail it does not necessarily mean the bitpattern is invalid, but rather that
the bitpattern is definitely not an instruction that is recognized by the
decoder method. The decoder can then try to match the input bitpattern with
other possible instruction bitpatterns.
For example, this allows to solve a situation on AArch64 where the `MSR
(immediate)` instruction has form:
1101 0101 0000 0??? 0100 ???? ???1 1111
but not all values of the ? bits are allowed. The rejected values should be
handled by the `extended MSR (register)` instruction:
1101 0101 000? ???? ???? ???? ???? ????
The decoder will first try to decode an input bitpattern that matches both
bitpatterns as `MSR (immediate)` but currently this puts the decoder method of
`MSR (immediate)` into a situation when it must be able to decode all possible
values of the ? bits, i.e. it would need to rewrite the instruction to `MSR
(register)` when it is not `MSR (immediate)`.
The patch allows to specify that the decoder method cannot determine if the
instruction is valid for all variable values. The decoder method can simply
return Fail when it knows it is definitely not `MSR (immediate)`. The decoder
will then backtrack the decoding and find that it can match the input
bitpattern with the more generic `MSR (register)` bitpattern too.
Differential Revision: http://reviews.llvm.org/D7174
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242274 91177308-0d34-0410-b5e6-96231b3b80d8
We were only testing on x86-64, but we should be ensuring decent code gen of i64 shifts on 32-bit targets.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242273 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
processFunctionBeforeCalleeSavedScan was renamed to determineCalleeSaves and now takes a BitVector parameter as of rL242165, reviewed in http://reviews.llvm.org/D10909
WebAssembly is still marked as experimental and therefore doesn't build by default. It does, however, grep by default! I notice that processFunctionBeforeCalleeSavedScan is still mentioned in a few comments and error messages, which I also fixed.
Reviewers: qcolombet, sunfish
Subscribers: jfb, dsanders, hfinkel, MatzeB, llvm-commits
Differential Revision: http://reviews.llvm.org/D11199
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242242 91177308-0d34-0410-b5e6-96231b3b80d8
Follow-up r235483, with the corresponding support in PPC. We use a regular call
for symbolic targets (because they're much cheaper than indirect calls).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242239 91177308-0d34-0410-b5e6-96231b3b80d8
We used to take the address specified as the direct target of the patchpoint
and did no TOC-pointer handling. This, however, as not all that useful,
because MCJIT tends to create a lot of modules, and they have their own TOC
sections. Thus, to call from the generated code to other generated code, you
really need to switch TOC pointers. Make this work as expected, and under
ELFv1, tread the address as the function descriptor address so that the correct
TOC pointer can be loaded.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242217 91177308-0d34-0410-b5e6-96231b3b80d8
For now the Archive owns the buffers of the thin archive members.
This makes for a simple API, but all the buffers are destructed
only when the archive is destructed. This should be fine since we
close the files after mmap so we should not hit an open file
limit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242215 91177308-0d34-0410-b5e6-96231b3b80d8
Sometimes an incidentally created instruction can duplicate a Value used
elsewhere. It then often doesn't end up in the leader table. If it's later
removed, we attempt to remove it from the leader table and segfault.
Instead we should just ignore the removal request, which won't cause any
problems. The reverse situation, where the original instruction is replaced by
the new one (which you might think could leave the leader table empty) cannot
occur, because the incidental instruction will never be found in the first
place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242199 91177308-0d34-0410-b5e6-96231b3b80d8
PowerPC uses itineraries to describe processor pipelines (and dispatch-group
restrictions for P7/P8 cores). Unfortunately, the target-independent
implementation of TII.getInstrLatency calls ItinData->getStageLatency, and that
looks for the largest cycle count in the pipeline for any given instruction.
This, however, yields the wrong answer for the PPC itineraries, because we
don't encode the full pipeline. Because the functional units are fully
pipelined, we only model the initial stages (there are no relevant hazards in
the later stages to model), and so the technique employed by getStageLatency
does not really work. Instead, we should take the maximum output operand
latency, and that's what PPCInstrInfo::getInstrLatency now does.
This caused some test-case churn, including two unfortunate side effects.
First, the new arrangement of copies we get from function parameters now
sometimes blocks VSX FMA mutation (a FIXME has been added to the code and the
test cases), and we have one significant test-suite regression:
SingleSource/Benchmarks/BenchmarkGame/spectral-norm
56.4185% +/- 18.9398%
In this benchmark we have a loop with a vectorized FP divide, and it with the
new scheduling both divides end up in the same dispatch group (which in this
case seems to cause a problem, although why is not exactly clear). The grouping
structure is hard to predict from the bottom of the loop, and there may not be
much we can do to fix this.
Very few other test-suite performance effects were really significant, but
almost all weakly favor this change. However, in light of the issues
highlighted above, I've left the old behavior available via a
command-line flag.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242188 91177308-0d34-0410-b5e6-96231b3b80d8
Convert logical operations on general-purpose registers to the correspon-
ding operations on predicate registers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242186 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Before this change, personality directives were not emitted
if there was no invoke left in the function (of course until
recently this also meant that we couldn't know what
the personality actually was). This patch forces personality directives
to still be emitted, unless it is known to be a noop in the absence of
invokes, or the user explicitly specified `nounwind` (and not
`uwtable`) on the function.
Reviewers: majnemer, rnk
Subscribers: rnk, llvm-commits
Differential Revision: http://reviews.llvm.org/D10884
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242185 91177308-0d34-0410-b5e6-96231b3b80d8
This can be done only with moves which theoretically
will optimize better later.
Although this transform increases the instruction count,
it should be code size / cycle count neutral in the worst
VALU case. It also seems to slightly improve a couple
of testcases due to other DAG combines this exposes.
This is probably slightly worse for the SALU case, so
it might be better to handle this during moveToVALU,
although then you lose some simplifications like
the load width reducing in the simple testcase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242177 91177308-0d34-0410-b5e6-96231b3b80d8
If the read2 produced was supposed to be writing into a
super register, it would use the wrong subregister indices.
Fix this by inserting copies, so we only ever write to a vreg_64.
Run the register coalescer again to clean this up, although this
isn't ideal and often does result in an extra move.
Also remove the assert that offset1 > offset0.
There isn't a real reason to not allow this other than a minor
convenience in the compiler, and it doesn't seem worth the effort
of avoiding it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242174 91177308-0d34-0410-b5e6-96231b3b80d8
The ones committed were orthogonal to the change and would have passed before
that revision. What it *did* do was prevent an assertion failure when
generating object files.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242166 91177308-0d34-0410-b5e6-96231b3b80d8
This changes TargetFrameLowering::processFunctionBeforeCalleeSavedScan():
- Rename the function to determineCalleeSaves()
- Pass a bitset of callee saved registers by reference, thus avoiding
the function-global PhysRegUsed bitset in MachineRegisterInfo.
- Without PhysRegUsed the implementation is fine tuned to not save
physcial registers which are only read but never modified.
Related to rdar://21539507
Differential Revision: http://reviews.llvm.org/D10909
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242165 91177308-0d34-0410-b5e6-96231b3b80d8
Generate extract instructions (via intrinsics) before the DAG combiner
folds shifts into unrecognizable forms.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242163 91177308-0d34-0410-b5e6-96231b3b80d8