definition DIE (TAG_variable), and put AT_MIPS_linkage_name to TAG_member when
DarwinGDBCompat is true.
Darwin GDB needs AT_MIPS_linkage_name at both places to work.
Follow-up patch to r176143.
rdar://problem/13291234
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176220 91177308-0d34-0410-b5e6-96231b3b80d8
This patch disables the counters on non-debug builds. This reduces the runtime of SelectionDAGISel::SelectCodeCommon by ~5%.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176214 91177308-0d34-0410-b5e6-96231b3b80d8
definition DIE, to make old GDB happy.
We have a regression for old GDB when Clang uses DW_TAG_member to declare
static members inside a class, instead of DW_TAG_variable. This patch will fix
this regression.
rdar://problem/13291234
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176143 91177308-0d34-0410-b5e6-96231b3b80d8
TAG_member inside a class to the specification DIE.
Having AT_MIPS_linkage_name on TAG_member caused old gdb (GNU 6.3.50) to
error out. Also gcc 4.7 has AT_MIPS_linkage_name on the specification DIE.
rdar://problem/13291234
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176120 91177308-0d34-0410-b5e6-96231b3b80d8
fewer scalar integer (i32 or i64) arguments. It completely eliminates the need
for SDISel for trivial functions.
Also, add the new llc -fast-isel-abort-args option, which is similar to
-fast-isel-abort option, but for formal argument lowering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176052 91177308-0d34-0410-b5e6-96231b3b80d8
memory intrinsics in the SDAG builder.
When alignment is zero, the lang ref says that *no* alignment
assumptions can be made. This is the exact opposite of the internal API
contracts of the DAG where alignment 0 indicates that the alignment can
be made to be anything desired.
There is another, more explicit alignment that is better suited for the
role of "no alignment at all": an alignment of 1. Map the intrinsic
alignment to this early so that we don't end up generating aligned DAGs.
It is really terrifying that we've never seen this before, but we
suddenly started generating a large number of alignment 0 memcpys due to
the new code to do memcpy-based copying of POD class members. That patch
contains a bug that rounds bitfield alignments down when they are the
first field. This can in turn produce zero alignments.
This fixes weird crashes I've seen in library users of LLVM on 32-bit
hosts, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176022 91177308-0d34-0410-b5e6-96231b3b80d8
itself recursively with a new instruction that has not been finalized, in order
to determine whether to keep the instruction. On 'make check' and test-suite the
only cases where the recursive invocation made any transformations were simple
instruction commutations, so I am restricting the recursive invocation to do
only this.
The other cases wouldn't work correctly when updating LiveIntervals, since the
new instructions don't have slot indices and LiveIntervals hasn't yet been
updated. If the other transformations were actually triggering in any test case
it would be possible to support it with a lot of effort, but since they don't
it's not worth it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175979 91177308-0d34-0410-b5e6-96231b3b80d8
unless it was requested to with an optional parameter that defaults to false, so
we don't need to handle that case in TwoAddressInstructionPass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175974 91177308-0d34-0410-b5e6-96231b3b80d8
TwoAddressInstructionPass. The code in rescheduleMIBelowKill() is a bit tricky,
since multiple instructions need to be moved down, one-at-a-time, in reverse
order.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175955 91177308-0d34-0410-b5e6-96231b3b80d8
One of the phases of SelectionDAG is LegalizeVectors. We don't need to sort the DAG and copy nodes around if there are no vector ops.
Speeds up the compilation time of SelectionDAG on a big scalar workload by ~8%.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175929 91177308-0d34-0410-b5e6-96231b3b80d8
It was incorrectly checking a Function* being an IntrinsicInst* which
isn't possible. It should always have been checking the CallInst* instead.
Added test case for x86 which ensures we only get one constant load.
It was 2 before this change.
rdar://problem/13267920
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175853 91177308-0d34-0410-b5e6-96231b3b80d8
pass. One of the callers of isKilled() can cope with overapproximation of kills
and the other can't, so I added a flag to indicate this.
In theory this could pessimize code slightly, but in practice most physical
register uses are kills, and most important kills of physical registers are the
only uses of that register prior to register allocation, so we can recognize
them as kills even without kill flags.
This is relevant because LiveIntervals gets rid of all kill flags.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175821 91177308-0d34-0410-b5e6-96231b3b80d8
to TargetFrameLowering, where it belongs. Incidentally, this allows us
to delete some duplicated (and slightly different!) code in TRI.
There are potentially other layering problems that can be cleaned up
as a result, or in a similar manner.
The refactoring was OK'd by Anton Korobeynikov on llvmdev.
Note: this touches the target interfaces, so out-of-tree targets may
be affected.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175788 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes some problems with too conservative checking where we were
marking all aliases of a register as used, and then also checking all
aliases when allocating a register.
<rdar://problem/13249625>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175782 91177308-0d34-0410-b5e6-96231b3b80d8
A legal BUILD_VECTOR goes in and gets constant folded into another legal
BUILD_VECTOR so we don't lose any legality here. The problematic PPC
optimization that made this check necessary was fixed recently.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175759 91177308-0d34-0410-b5e6-96231b3b80d8
This brings the number of remaining failures in 'make check' without
LiveVariables down to 39, with 1 unexpectedly passing test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175727 91177308-0d34-0410-b5e6-96231b3b80d8
available.
With this commit there are no longer any assertion or verifier failures when
running 'make check' without LiveVariables. There are still 56 failing tests
with codegen differences and 1 unexpectedly passing test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175719 91177308-0d34-0410-b5e6-96231b3b80d8
Rewrite value numbers directly in the 'Other' LiveInterval which is
moribund anyway. This avoids allocating the OtherAssignments vector.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175690 91177308-0d34-0410-b5e6-96231b3b80d8
When findReachingDefs() finds that only one value can reach the basic
block, just copy the work list of visited blocks directly into the live
interval.
Sort the block list and use a LiveRangeUpdater to make the bulk add
fast.
When multiple reaching defs are found, transfer the work list to the
updateSSA() work list as before. Also use LiveRangeUpdater in
updateLiveIns() following updateSSA().
This makes live interval analysis more than 3x faster on one huge test
case.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175685 91177308-0d34-0410-b5e6-96231b3b80d8
related failures when running 'make check' without LiveVariables with the
verifier enabled. Some of the remaining failures elsewhere may still be fallout
from incorrect updating of LiveIntervals or the few missing cases left in the
two-address pass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175672 91177308-0d34-0410-b5e6-96231b3b80d8
(2xi32) (truncate ((2xi64) bitcast (buildvector i32 a, i32 x, i32 b, i32 y)))
can be folded into a (2xi32) (buildvector i32 a, i32 b).
Such a DAG would cause uneccessary vdup instructions followed by vmovn
instructions.
We generate this code on ARM NEON for a setcc olt, 2xf64, 2xf64. For example, in
the vectorized version of the code below.
double A[N];
double B[N];
void test_double_compare_to_double() {
int i;
for(i=0;i<N;i++)
A[i] = (double)(A[i] < B[i]);
}
radar://13191881
Fixes bug 15283.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175670 91177308-0d34-0410-b5e6-96231b3b80d8
Adding new segments to large LiveIntervals can be expensive because the
LiveRange objects after the insertion point may need to be moved left or
right. This can cause quadratic behavior when adding a large number of
segments to a live range.
The LiveRangeUpdater class allows the LIveInterval to be in a temporary
invalid state while segments are being added. It maintains an internal
gap in the LiveInterval when it is shrinking, and it has a spill area
for new segments when the LiveInterval is growing.
The behavior is similar to the existing mergeIntervalRanges() function,
except it allocates less memory for the spill area, and the algorithm is
turned inside out so the loop is driven by the clients.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@175644 91177308-0d34-0410-b5e6-96231b3b80d8