Introduce -mllvm -sanitizer-coverage-8bit-counters=1
which adds imprecise thread-unfriendly 8-bit coverage counters.
The run-time library maps these 8-bit counters to 8-bit bitsets in the same way
AFL (http://lcamtuf.coredump.cx/afl/technical_details.txt) does:
counter values are divided into 8 ranges and based on the counter
value one of the bits in the bitset is set.
The AFL ranges are used here: 1, 2, 3, 4-7, 8-15, 16-31, 32-127, 128+.
These counters provide a search heuristic for single-threaded
coverage-guided fuzzers, we do not expect them to be useful for other purposes.
Depending on the value of -fsanitize-coverage=[123] flag,
these counters will be added to the function entry blocks (=1),
every basic block (=2), or every edge (=3).
Use these counters as an optional search heuristic in the Fuzzer library.
Add a test where this heuristic is critical.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231166 91177308-0d34-0410-b5e6-96231b3b80d8
Move the specialized metadata nodes for the new debug info hierarchy
into place, finishing off PR22464. I've done bootstraps (and all that)
and I'm confident this commit is NFC as far as DWARF output is
concerned. Let me know if I'm wrong :).
The code changes are fairly mechanical:
- Bumped the "Debug Info Version".
- `DIBuilder` now creates the appropriate subclass of `MDNode`.
- Subclasses of DIDescriptor now expect to hold their "MD"
counterparts (e.g., `DIBasicType` expects `MDBasicType`).
- Deleted a ton of dead code in `AsmWriter.cpp` and `DebugInfo.cpp`
for printing comments.
- Big update to LangRef to describe the nodes in the new hierarchy.
Feel free to make it better.
Testcase changes are enormous. There's an accompanying clang commit on
its way.
If you have out-of-tree debug info testcases, I just broke your build.
- `upgrade-specialized-nodes.sh` is attached to PR22564. I used it to
update all the IR testcases.
- Unfortunately I failed to find way to script the updates to CHECK
lines, so I updated all of these by hand. This was fairly painful,
since the old CHECKs are difficult to reason about. That's one of
the benefits of the new hierarchy.
This work isn't quite finished, BTW. The `DIDescriptor` subclasses are
almost empty wrappers, but not quite: they still have loose casting
checks (see the `RETURN_FROM_RAW()` macro). Once they're completely
gutted, I'll rename the "MD" classes to "DI" and kill the wrappers. I
also expect to make a few schema changes now that it's easier to reason
about everything.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231082 91177308-0d34-0410-b5e6-96231b3b80d8
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230794 91177308-0d34-0410-b5e6-96231b3b80d8
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
Currently, the ASan executables built with -O0 are unnecessarily slow.
The main reason is that ASan instrumentation pass inserts redundant
checks around promotable allocas. These allocas do not get instrumented
under -O1 because they get converted to virtual registered by mem2reg.
With this patch, ASan instrumentation pass will only instrument non
promotable allocas, giving us a speedup of 39% on a collection of
benchmarks with -O0. (There is no measurable speedup at -O1.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230724 91177308-0d34-0410-b5e6-96231b3b80d8
This symbol exists only to pull in the required pieces of the runtime,
so nothing ever needs to refer to it. Making it hidden avoids the
potential for issues with duplicate symbols when linking profiled
libraries together.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230566 91177308-0d34-0410-b5e6-96231b3b80d8
This test checks that the symbols instrprof creates have appropriate
linkage. The tests already exist in clang in a slightly different form
from before we sunk profile generation into an LLVM pass, but that's
an awkward place for them now. I'll remove/simplify the clang versions
shortly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230383 91177308-0d34-0410-b5e6-96231b3b80d8
I've built some tests in WebRTC with and without this change. With this change number of __tsan_read/write calls is reduced by 20-40%, binary size decreases by 5-10% and execution time drops by ~5%. For example:
$ ls -l old/modules_unittests new/modules_unittests
-rwxr-x--- 1 dvyukov 41708976 Jan 20 18:35 old/modules_unittests
-rwxr-x--- 1 dvyukov 38294008 Jan 20 18:29 new/modules_unittests
$ objdump -d old/modules_unittests | egrep "callq.*__tsan_(read|write|unaligned)" | wc -l
239871
$ objdump -d new/modules_unittests | egrep "callq.*__tsan_(read|write|unaligned)" | wc -l
148365
http://reviews.llvm.org/D7069
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228917 91177308-0d34-0410-b5e6-96231b3b80d8
An atomic store always make the target location fully initialized (in the
current implementation). It should not store origin. Initialized memory can't
have meaningful origin, and, due to origin granularity (4 bytes) there is a
chance that this extra store would overwrite meaningfull origin for an adjacent
location.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228444 91177308-0d34-0410-b5e6-96231b3b80d8
If a memory access is unaligned, emit __tsan_unaligned_read/write
callbacks instead of __tsan_read/write.
Required to change semantics of __tsan_unaligned_read/write to not do the user memory.
But since they were unused (other than through __sanitizer_unaligned_load/store) this is fine.
Fixes long standing issue 17:
https://code.google.com/p/thread-sanitizer/issues/detail?id=17
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227231 91177308-0d34-0410-b5e6-96231b3b80d8
Sanitizer coverage constructor must run after asan constructor (for each DSO).
Bump constructor priority to guarantee that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227195 91177308-0d34-0410-b5e6-96231b3b80d8
Previously we always stored 4 bytes of origin at the destination address
even for 8-byte (and longer) stores.
This should fix rare missing, or incorrect, origin stacks in MSan reports.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226658 91177308-0d34-0410-b5e6-96231b3b80d8
The new code does not create new basic blocks in the case when shadow is a
compile-time constant; it generates either an unconditional __msan_warning
call or nothing instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226569 91177308-0d34-0410-b5e6-96231b3b80d8
This commit moves `MDLocation`, finishing off PR21433. There's an
accompanying clang commit for frontend testcases. I'll attach the
testcase upgrade script I used to PR21433 to help out-of-tree
frontends/backends.
This changes the schema for `DebugLoc` and `DILocation` from:
!{i32 3, i32 7, !7, !8}
to:
!MDLocation(line: 3, column: 7, scope: !7, inlinedAt: !8)
Note that empty fields (line/column: 0 and inlinedAt: null) don't get
printed by the assembly writer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226048 91177308-0d34-0410-b5e6-96231b3b80d8
In order to make comdats always explicit in the IR, we decided to make
the syntax a bit more compact for the case of a GlobalObject in a
comdat with the same name.
Just dropping the $name causes problems for
@foo = globabl i32 0, comdat
$bar = comdat ...
and
declare void @foo() comdat
$bar = comdat ...
So the syntax is changed to
@g1 = globabl i32 0, comdat($c1)
@g2 = globabl i32 0, comdat
and
declare void @foo() comdat($c1)
declare void @foo() comdat
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225302 91177308-0d34-0410-b5e6-96231b3b80d8
Now that `Metadata` is typeless, reflect that in the assembly. These
are the matching assembly changes for the metadata/value split in
r223802.
- Only use the `metadata` type when referencing metadata from a call
intrinsic -- i.e., only when it's used as a `Value`.
- Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
when referencing it from call intrinsics.
So, assembly like this:
define @foo(i32 %v) {
call void @llvm.foo(metadata !{i32 %v}, metadata !0)
call void @llvm.foo(metadata !{i32 7}, metadata !0)
call void @llvm.foo(metadata !1, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{metadata !3}, metadata !0)
ret void, !bar !2
}
!0 = metadata !{metadata !2}
!1 = metadata !{i32* @global}
!2 = metadata !{metadata !3}
!3 = metadata !{}
turns into this:
define @foo(i32 %v) {
call void @llvm.foo(metadata i32 %v, metadata !0)
call void @llvm.foo(metadata i32 7, metadata !0)
call void @llvm.foo(metadata i32* @global, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{!3}, metadata !0)
ret void, !bar !2
}
!0 = !{!2}
!1 = !{i32* @global}
!2 = !{!3}
!3 = !{}
I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines). I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.
This is part of PR21532.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224257 91177308-0d34-0410-b5e6-96231b3b80d8
This commit changes the way we get fake stack from ASan runtime
(to find use-after-return errors) and the way we represent local
variables:
- __asan_stack_malloc function now returns pointer to newly allocated
fake stack frame, or NULL if frame cannot be allocated. It doesn't
take pointer to real stack as an input argument, it is calculated
inside the runtime.
- __asan_stack_free function doesn't take pointer to real stack as
an input argument. Now this function is never called if fake stack
frame wasn't allocated.
- __asan_init version is bumped to reflect changes in the ABI.
- new flag "-asan-stack-dynamic-alloca" allows to store all the
function local variables in a dynamic alloca, instead of the static
one. It reduces the stack space usage in use-after-return mode
(dynamic alloca will not be called if the local variables are stored
in a fake stack), and improves the debug info quality for local
variables (they will not be described relatively to %rbp/%rsp, which
are assumed to be clobbered by function calls). This flag is turned
off by default for now, but I plan to turn it on after more
testing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224062 91177308-0d34-0410-b5e6-96231b3b80d8
Introduce the ``llvm.instrprof_increment`` intrinsic and the
``-instrprof`` pass. These provide the infrastructure for writing
counters for profiling, as in clang's ``-fprofile-instr-generate``.
The implementation of the instrprof pass is ported directly out of the
CodeGenPGO classes in clang, and with the followup in clang that rips
that code out to use these new intrinsics this ends up being NFC.
Doing the instrumentation this way opens some doors in terms of
improving the counter performance. For example, this will make it
simple to experiment with alternate lowering strategies, and allows us
to try handling profiling specially in some optimizations if we want
to.
Finally, this drastically simplifies the frontend and puts all of the
lowering logic in one place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223672 91177308-0d34-0410-b5e6-96231b3b80d8
Do not realign origin address if the corresponding application
address is at least 4-byte-aligned.
Saves 2.5% code size in track-origins mode.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223464 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This change moves asan-coverage instrumentation
into a separate Module pass.
The other part of the change in clang introduces a new flag
-fsanitize-coverage=N.
Another small patch will update tests in compiler-rt.
With this patch no functionality change is expected except for the flag name.
The following changes will make the coverage instrumentation work with tsan/msan
Test Plan: Run regression tests, chromium.
Reviewers: nlewycky, samsonov
Reviewed By: nlewycky, samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6152
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221718 91177308-0d34-0410-b5e6-96231b3b80d8
The variable is private, so the name should not be relied on. Also, the
linker uses the sections, so asan should too when trying to avoid causing
the linker problems.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221480 91177308-0d34-0410-b5e6-96231b3b80d8
We currently have no infrastructure to support these correctly.
This is accomplished by generating a call to a runtime library function that
aborts at runtime in place of the regular wrapper for such functions. Direct
calls are rewritten in the usual way during traversal of the caller's IR.
We also remove the "split-stack" attribute from such wrappers, as the code
generator cannot currently handle split-stack vararg functions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221360 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The previous calling convention prevented custom functions from being able
to access argument labels unless it knew how many variadic arguments there
were, and of which type. This restriction made it impossible to correctly
model functions in the printf family, as it is legal to pass more arguments
than required to those functions. We now pass arguments in the following order:
non-vararg arguments
labels for non-vararg arguments
[if vararg function, pointer to array of labels for vararg arguments]
[if non-void function, pointer to label for return value]
vararg arguments
Differential Revision: http://reviews.llvm.org/D6028
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220906 91177308-0d34-0410-b5e6-96231b3b80d8
This is somewhat the inverse of how similar bugs in DAE and ArgPromo
manifested and were addressed. In those passes, individual call sites
were visited explicitly, and then the old function was deleted. This
left the debug info with a null llvm::Function* that needed to be
updated to point to the new function.
In the case of DFSan, it RAUWs the old function with the wrapper, which
includes debug info. So now the debug info refers to the wrapper, which
doesn't actually have any instructions with debug info in it, so it is
ignored entirely - resulting in a DW_TAG_subprogram with no high/low pc,
etc. Instead, fix up the debug info to refer to the original function
after the RAUW messed it up.
Reviewed/discussed with Peter Collingbourne on the llvm-dev mailing
list.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219249 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r218918, effectively reapplying r218914 after fixing
an Ocaml bindings test and an Asan crash. The root cause of the latter
was a tightened-up check in `DILexicalBlock::Verify()`, so I'll file a
PR to investigate who requires the loose check (and why).
Original commit message follows.
--
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219010 91177308-0d34-0410-b5e6-96231b3b80d8