This lets us avoid a few copies that are otherwise hard to get rid of.
The way this is done is, the custom-inserter looks at the following
instruction for another CMOV, and replaces both at the same time.
A previous version used a new CMOV2 opcode, but the custom inserter
is expected to be able to return a different basic block anyway, which
means it's OK - though far from ideal - to alter that block's contents.
Explicitly document that, in case it ever makes a difference.
Alternatives welcome!
Follow-up to r231045.
rdar://19767934
Closes http://reviews.llvm.org/D8019
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231046 91177308-0d34-0410-b5e6-96231b3b80d8
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231043 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch is an attempt at making `DenseMapIterator`s "fail-fast".
Fail-fast iterators that have been invalidated due to insertion into
the host `DenseMap` deterministically trip an assert (in debug mode)
on access, instead of non-deterministically hitting memory corruption
issues.
Reviewers: dexonsmith, dberlin, ruiu, chandlerc
Reviewed By: chandlerc
Subscribers: yaron.keren, chandlerc, llvm-commits
Differential Revision: http://reviews.llvm.org/D7931
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231035 91177308-0d34-0410-b5e6-96231b3b80d8
TargetRegisterInfo. DebugLocEntry now holds a buffer with the raw bytes
of the pre-calculated DWARF expression.
Ought to be NFC, but it does slightly alter the output format of the
textual assembly.
This reapplies 230930 without the assertion in DebugLocEntry::finalize()
because not all Machine registers can be lowered into DWARF register
numbers and floating point constants cannot be expressed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231023 91177308-0d34-0410-b5e6-96231b3b80d8
Add the enum "LLVMLinkerMode" back for backwards-compatibility and add the
linker mode parameter back to the "LLVMLinkModules" function. The paramter is
ignored and has no effect.
Patch provided by: Filip Pizlo
Reviewed by: Rafael and Sean
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230988 91177308-0d34-0410-b5e6-96231b3b80d8
TargetRegisterInfo. DebugLocEntry now holds a buffer with the raw bytes
of the pre-calculated DWARF expression.
Ought to be NFC, but it does slightly alter the output format of the
textual assembly.
This reapplies 230930 with a relaxed assertion in DebugLocEntry::finalize()
that allows for empty DWARF expressions for constant FP values.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230975 91177308-0d34-0410-b5e6-96231b3b80d8
A short list of some of the improvements:
1) Now supports -all command line argument, which implies many
other command line arguments to simplify usage.
2) Now supports -no-compiler-generated command line argument to
exclude compiler generated types.
3) Prints base class list.
4) -class-definitions implies -types.
5) Proper display of bitfields.
6) Can now distinguish between struct/class/interface/union.
And a few other minor tweaks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230933 91177308-0d34-0410-b5e6-96231b3b80d8
TargetRegisterInfo. DebugLocEntry now holds a buffer with the raw bytes
of the pre-calculated DWARF expression.
Ought to be NFC, but it does slightly alter the output format of the
textual assembly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230930 91177308-0d34-0410-b5e6-96231b3b80d8
This has the nice property of compiling down to memcmp when feasible. An empty
ArrayRef can have a nullptr in its Data field. I didn't find anything in the
standard speaking against std::equal(nullptr, nullptr, nullptr) begin valid but
MSVC asserts. The way libstdc++ lowers std::equal down to memcmp also makes
invoking std::equal with a nullptr undefined behavior so checking is the only
way to be safe.
The extra check doesn't cost us perf either because we're essentially peeling
the loop header away from the rotated loop.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230920 91177308-0d34-0410-b5e6-96231b3b80d8
With initializer lists there is a really neat idiomatic way to write
this, 'ArrayRef.equals({1, 2, 3, 4, 5})'. Remove the equal method which
always had a hard limit on the number of arguments. I considered
rewriting it with variadic templates but that's not really a good fit
for a function with homogeneous arguments.
'ArrayRef == {1, 2, 3, 4, 5}' would've been even more awesome, but C++11
doesn't allow init lists with binary operators.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230907 91177308-0d34-0410-b5e6-96231b3b80d8
Such edges are zero matrix, and they bring no additional info to the
allocation problem, apart from contributing to nodes' degree. Removing
those edges is expected to improve allocation time.
Tune the spill cost comparison, as this gives better average performances
now that the nodes' degrees has changed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230904 91177308-0d34-0410-b5e6-96231b3b80d8
There are static variables of this around that we really want to go
into a read-only segment. Sadly compilers are not smart enough to figure
that out without constexpr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230895 91177308-0d34-0410-b5e6-96231b3b80d8
Fix `MDScope::getFile()` so that it correctly returns a valid `MDFile`
even when it's an instance of `MDFile`. This logic is necessary because
of r230057. I'm working on moving the new hierarchy into place
out-of-tree (on track to commit Monday morning, BTW), and this was
exposed by a few failing tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230871 91177308-0d34-0410-b5e6-96231b3b80d8
Previously it was impossible to distinguish between "There is
no PDB implementation for this platform" and "I tried to load
the PDB, but couldn't find the file", making it hard to figure
out if you built llvm-pdbdump incorrectly or if you just mistyped
a file name.
This patch adds proper error handling so that we can know exactly
what went wrong.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230868 91177308-0d34-0410-b5e6-96231b3b80d8
This looks ridiculous but SmallVector's realloc tricks really help with
large vectors of PODs, such as our virtreg IndexedMap.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230866 91177308-0d34-0410-b5e6-96231b3b80d8
All of the cases were just appending from random access iterators to a
vector. Using insert/append can grow the vector to the perfect size
directly and moves the growing out of the loop. No intended functionalty
change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230845 91177308-0d34-0410-b5e6-96231b3b80d8
This work is currently being rethought along different lines and
if this work is needed it can be resurrected out of svn. Remove it
for now as no current work in ongoing on it and it's unused. Verified
with the authors before removal.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230780 91177308-0d34-0410-b5e6-96231b3b80d8
This removes a bit of duplicated code and more importantly, remembers the
labels so that they don't need to be looked up by name.
This in turn allows for any name to be used and avoids a crash if the name
we wanted was already taken.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230772 91177308-0d34-0410-b5e6-96231b3b80d8
AnalysisResult::getResultImpl reuses an iterator into a DenseMap after
inserting elements into it. This change adds code to recompute the
iterator before the second use.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230718 91177308-0d34-0410-b5e6-96231b3b80d8
uses of TM->getSubtargetImpl and propagate to all calls.
This could be a debugging regression in places where we had a
TargetMachine and/or MachineFunction but don't have it as part
of the MachineInstr. Fixing this would require passing a
MachineFunction/Function down through the print operator, but
none of the existing uses in tree seem to do this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230710 91177308-0d34-0410-b5e6-96231b3b80d8
Function pointers were not correctly handled by the dumper, and
they would print as "* name". They now print as
"int (__cdecl *name)(int arg1, int arg2)" as they should.
Also, doubles were being printed as floats. This fixes that bug
as well, and adds tests for all builtin types. as well as a test
for function pointers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230703 91177308-0d34-0410-b5e6-96231b3b80d8
a lookup, pass that in rather than use a naked call to getSubtargetImpl.
This involved passing down and around either a TargetMachine or
TargetRegisterInfo. Update all callers/definitions around the targets
and SelectionDAG.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230699 91177308-0d34-0410-b5e6-96231b3b80d8
Creating BinaryCoverageReader is a strange and complicated dance where
the constructor sets error codes that member functions will later
read, and the object is in an invalid state if readHeader isn't
immediately called after construction.
Instead, make the constructor private and add a static create method
to do the construction properly. This also has the benefit of removing
readHeader completely and simplifying the interface of the object.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230676 91177308-0d34-0410-b5e6-96231b3b80d8
The current name is long and confusing. A shorter one is both easier
to understand and easier to work with.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230675 91177308-0d34-0410-b5e6-96231b3b80d8