47 Commits

Author SHA1 Message Date
Alexei Starovoitov
4fe85c7548 BPF backend
Summary:
V8->V9:
- cleanup tests

V7->V8:
- addressed feedback from David:
- switched to range-based 'for' loops
- fixed formatting of tests

V6->V7:
- rebased and adjusted AsmPrinter args
- CamelCased .td, fixed formatting, cleaned up names, removed unused patterns
- diffstat: 3 files changed, 203 insertions(+), 227 deletions(-)

V5->V6:
- addressed feedback from Chandler:
- reinstated full verbose standard banner in all files
- fixed variables that were not in CamelCase
- fixed names of #ifdef in header files
- removed redundant braces in if/else chains with single statements
- fixed comments
- removed trailing empty line
- dropped debug annotations from tests
- diffstat of these changes:
  46 files changed, 456 insertions(+), 469 deletions(-)

V4->V5:
- fix setLoadExtAction() interface
- clang-formated all where it made sense

V3->V4:
- added CODE_OWNERS entry for BPF backend

V2->V3:
- fix metadata in tests

V1->V2:
- addressed feedback from Tom and Matt
- removed top level change to configure (now everything via 'experimental-backend')
- reworked error reporting via DiagnosticInfo (similar to R600)
- added few more tests
- added cmake build
- added Triple::bpf
- tested on linux and darwin

V1 cover letter:
---------------------
recently linux gained "universal in-kernel virtual machine" which is called
eBPF or extended BPF. The name comes from "Berkeley Packet Filter", since
new instruction set is based on it.
This patch adds a new backend that emits extended BPF instruction set.

The concept and development are covered by the following articles:
http://lwn.net/Articles/599755/
http://lwn.net/Articles/575531/
http://lwn.net/Articles/603983/
http://lwn.net/Articles/606089/
http://lwn.net/Articles/612878/

One of use cases: dtrace/systemtap alternative.

bpf syscall manpage:
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=b4fc1a460f3017e958e6a8ea560ea0afd91bf6fe

instruction set description and differences vs classic BPF:
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/filter.txt

Short summary of instruction set:
- 64-bit registers
  R0      - return value from in-kernel function, and exit value for BPF program
  R1 - R5 - arguments from BPF program to in-kernel function
  R6 - R9 - callee saved registers that in-kernel function will preserve
  R10     - read-only frame pointer to access stack
- two-operand instructions like +, -, *, mov, load/store
- implicit prologue/epilogue (invisible stack pointer)
- no floating point, no simd

Short history of extended BPF in kernel:
interpreter in 3.15, x64 JIT in 3.16, arm64 JIT, verifier, bpf syscall in 3.18, more to come in the future.

It's a very small and simple backend.
There is no support for global variables, arbitrary function calls, floating point, varargs,
exceptions, indirect jumps, arbitrary pointer arithmetic, alloca, etc.
From C front-end point of view it's very restricted. It's done on purpose, since kernel
rejects all programs that it cannot prove safe. It rejects programs with loops
and with memory accesses via arbitrary pointers. When kernel accepts the program it is
guaranteed that program will terminate and will not crash the kernel.

This patch implements all 'must have' bits. There are several things on TODO list,
so this is not the end of development.
Most of the code is a boiler plate code, copy-pasted from other backends.
Only odd things are lack or < and <= instructions, specialized load_byte intrinsics
and 'compare and goto' as single instruction.
Current instruction set is fixed, but more instructions can be added in the future.

Signed-off-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>

Subscribers: majnemer, chandlerc, echristo, joerg, pete, rengolin, kristof.beyls, arsenm, t.p.northover, tstellarAMD, aemerson, llvm-commits

Differential Revision: http://reviews.llvm.org/D6494

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227008 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-24 17:51:26 +00:00
Ramkumar Ramachandra
230796b278 Intrinsics: introduce llvm_any_ty aka ValueType Any
Specifically, gc.result benefits from this greatly. Instead of:

gc.result.int.*
gc.result.float.*
gc.result.ptr.*
...

We now have a gc.result.* that can specialize to literally any type.

Differential Revision: http://reviews.llvm.org/D7020

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226857 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-22 20:14:38 +00:00
Reid Kleckner
d8f69a7201 Rename llvm.recoverframeallocation to llvm.framerecover
This name is less descriptive, but it sort of puts things in the
'llvm.frame...' namespace, relating it to frameallocate and
frameaddress. It also avoids using "allocate" and "allocation" together.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225752 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-13 01:51:34 +00:00
Reid Kleckner
221a7075cf Add the llvm.frameallocate and llvm.recoverframeallocation intrinsics
These intrinsics allow multiple functions to share a single stack
allocation from one function's call frame. The function with the
allocation may only perform one allocation, and it must be in the entry
block.

Functions accessing the allocation call llvm.recoverframeallocation with
the function whose frame they are accessing and a frame pointer from an
active call frame of that function.

These intrinsics are very difficult to inline correctly, so the
intention is that they be introduced rarely, or at least very late
during EH preparation.

Reviewers: echristo, andrew.w.kaylor

Differential Revision: http://reviews.llvm.org/D6493

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225746 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-13 00:48:10 +00:00
Elena Demikhovsky
b31322328a Masked Load/Store - Changed the order of parameters in intrinsics.
No functional changes.
The documentation is coming.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224829 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-25 07:49:20 +00:00
Justin Bogner
70b0751080 InstrProf: An intrinsic and lowering for instrumentation based profiling
Introduce the ``llvm.instrprof_increment`` intrinsic and the
``-instrprof`` pass. These provide the infrastructure for writing
counters for profiling, as in clang's ``-fprofile-instr-generate``.

The implementation of the instrprof pass is ported directly out of the
CodeGenPGO classes in clang, and with the followup in clang that rips
that code out to use these new intrinsics this ends up being NFC.

Doing the instrumentation this way opens some doors in terms of
improving the counter performance. For example, this will make it
simple to experiment with alternate lowering strategies, and allows us
to try handling profiling specially in some optimizations if we want
to.

Finally, this drastically simplifies the frontend and puts all of the
lowering logic in one place.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223672 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-08 18:02:35 +00:00
Elena Demikhovsky
73ae1df82c Masked Load / Store Intrinsics - the CodeGen part.
I'm recommiting the codegen part of the patch.
The vectorizer part will be send to review again.

Masked Vector Load and Store Intrinsics.
Introduced new target-independent intrinsics in order to support masked vector loads and stores. The loop vectorizer optimizes loops containing conditional memory accesses by generating these intrinsics for existing targets AVX2 and AVX-512. The vectorizer asks the target about availability of masked vector loads and stores.
Added SDNodes for masked operations and lowering patterns for X86 code generator.
Examples:
<16 x i32> @llvm.masked.load.v16i32(i8* %addr, <16 x i32> %passthru, i32 4 /* align */, <16 x i1> %mask)
declare void @llvm.masked.store.v8f64(i8* %addr, <8 x double> %value, i32 4, <8 x i1> %mask)

Scalarizer for other targets (not AVX2/AVX-512) will be done in a separate patch.

http://reviews.llvm.org/D6191



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223348 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-04 09:40:44 +00:00
Philip Reames
204e21b51a [Statepoints 1/4] Statepoint infrastructure for garbage collection: IR Intrinsics
The statepoint intrinsics are intended to enable precise root tracking through the compiler as to support garbage collectors of all types. The addition of the statepoint intrinsics to LLVM should have no impact on the compilation of any program which does not contain them. There are no side tables created, no extra metadata, and no inhibited optimizations.

A statepoint works by transforming a call site (or safepoint poll site) into an explicit relocation operation. It is the frontend's responsibility (or eventually the safepoint insertion pass we've developed, but that's not part of this patch series) to ensure that any live pointer to a GC object is correctly added to the statepoint and explicitly relocated. The relocated value is just a normal SSA value (as seen by the optimizer), so merges of relocated and unrelocated values are just normal phis. The explicit relocation operation, the fact the statepoint is assumed to clobber all memory, and the optimizers standard semantics ensure that the relocations flow through IR optimizations correctly.

This is the first patch in a small series.  This patch contains only the IR parts; the documentation and backend support will be following separately.  The entire series can be seen as one combined whole in http://reviews.llvm.org/D5683.

Reviewed by: atrick, ributzka





git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223078 91177308-0d34-0410-b5e6-96231b3b80d8
2014-12-01 21:18:12 +00:00
Duncan P. N. Exon Smith
54786a0936 Revert "Masked Vector Load and Store Intrinsics."
This reverts commit r222632 (and follow-up r222636), which caused a host
of LNT failures on an internal bot.  I'll respond to the commit on the
list with a reproduction of one of the failures.

Conflicts:
	lib/Target/X86/X86TargetTransformInfo.cpp

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222936 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-28 21:29:14 +00:00
Elena Demikhovsky
ae1ae2c3a1 Masked Vector Load and Store Intrinsics.
Introduced new target-independent intrinsics in order to support masked vector loads and stores. The loop vectorizer optimizes loops containing conditional memory accesses by generating these intrinsics for existing targets AVX2 and AVX-512. The vectorizer asks the target about availability of masked vector loads and stores.
Added SDNodes for masked operations and lowering patterns for X86 code generator.
Examples:
<16 x i32> @llvm.masked.load.v16i32(i8* %addr, <16 x i32> %passthru, i32 4 /* align */, <16 x i1> %mask)
declare void @llvm.masked.store.v8f64(i8* %addr, <8 x double> %value, i32 4, <8 x i1> %mask)

Scalarizer for other targets (not AVX2/AVX-512) will be done in a separate patch.

http://reviews.llvm.org/D6191



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222632 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-23 08:07:43 +00:00
Matt Arsenault
252134602f Add minnum / maxnum intrinsics
These are named following the IEEE-754 names for these
functions, rather than the libm fmin / fmax to avoid
possible ambiguities. Some languages may implement something
resembling fmin / fmax which return NaN if either operand is
to propagate errors. These implement the IEEE-754 semantics
of returning the other operand if either is a NaN representing
missing data.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220341 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-21 23:00:20 +00:00
Juergen Ributzka
32ef68718d [Stackmaps] Enable invoking the patchpoint intrinsic.
Patch by Kevin Modzelewski
Reviewers: atrick, ributzka
Reviewed By: ributzka
Subscribers: llvm-commits, reames

Differential Revision: http://reviews.llvm.org/D5634

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220055 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-17 17:39:00 +00:00
Adrian Prantl
02474a32eb Move the complex address expression out of DIVariable and into an extra
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.

Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.

By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.

The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)

This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.

What this patch doesn't do:

This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.

http://reviews.llvm.org/D4919
rdar://problem/17994491

Thanks to dblaikie and dexonsmith for reviewing this patch!

Note: I accidentally committed a bogus older version of this patch previously.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218787 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-01 18:55:02 +00:00
Adrian Prantl
10c4265675 Revert r218778 while investigating buldbot breakage.
"Move the complex address expression out of DIVariable and into an extra"

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218782 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-01 18:10:54 +00:00
Adrian Prantl
076fd5dfc1 Move the complex address expression out of DIVariable and into an extra
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.

Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.

By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.

The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)

This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.

What this patch doesn't do:

This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.

http://reviews.llvm.org/D4919
rdar://problem/17994491

Thanks to dblaikie and dexonsmith for reviewing this patch!

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218778 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-01 17:55:39 +00:00
Hal Finkel
8ef7b17dfc Add @llvm.assume, lowering, and some basic properties
This is the first commit in a series that add an @llvm.assume intrinsic which
can be used to provide the optimizer with a condition it may assume to be true
(when the control flow would hit the intrinsic call). Some basic properties are added here:

 - llvm.invariant(true) is dead.
 - llvm.invariant(false) is unreachable (this directly corresponds to the
   documented behavior of MSVC's __assume(0)), so is llvm.invariant(undef).

The intrinsic is tagged as writing arbitrarily, in order to maintain control
dependencies. BasicAA has been updated, however, to return NoModRef for any
particular location-based query so that we don't unnecessarily block code
motion.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213973 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-25 21:13:35 +00:00
Tim Northover
3e61ccdded CodeGen: extend f16 conversions to permit types > float.
This makes the two intrinsics @llvm.convert.from.f16 and
@llvm.convert.to.f16 accept types other than simple "float". This is
only strictly needed for the truncate operation, since otherwise
double rounding occurs and there's no way to represent the strict IEEE
conversion. However, for symmetry we allow larger types in the extend
too.

During legalization, we can expand an "fp16_to_double" operation into
two extends for convenience, but abort when the truncate isn't legal. A new
libcall is probably needed here.

Even after this commit, various target tweaks are needed to actually use the
extended intrinsics. I've put these into separate commits for clarity, so there
are no actual tests of f64 conversion here.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213248 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-17 10:51:23 +00:00
Saleem Abdulrasool
bb5f6229f4 TableGen: introduce support for MSBuiltin
Add MSBuiltin which is similar in vein to GCCBuiltin.  This allows for adding
intrinsics for Microsoft compatibility to individual instructions.  This is
needed to permit the creation of ARM specific MSVC extensions.

This is not currently in use, and requires an associated change in clang to
enable use of the intrinsics defined by this new class.  This merely sets the
LLVM portion of the infrastructure in place to permit the use of this
functionality.  A separate set of changes will enable the new intrinsics.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212350 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-04 18:42:25 +00:00
Tim Northover
29f94c7201 AArch64/ARM64: move ARM64 into AArch64's place
This commit starts with a "git mv ARM64 AArch64" and continues out
from there, renaming the C++ classes, intrinsics, and other
target-local objects for consistency.

"ARM64" test directories are also moved, and tests that began their
life in ARM64 use an arm64 triple, those from AArch64 use an aarch64
triple. Both should be equivalent though.

This finishes the AArch64 merge, and everyone should feel free to
continue committing as normal now.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209577 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-24 12:50:23 +00:00
Tim Northover
9105f66d6f AArch64/ARM64: remove AArch64 from tree prior to renaming ARM64.
I'm doing this in two phases for a better "git blame" record. This
commit removes the previous AArch64 backend and redirects all
functionality to ARM64. It also deduplicates test-lines and removes
orphaned AArch64 tests.

The next step will be "git mv ARM64 AArch64" and rewire most of the
tests.

Hopefully LLVM is still functional, though it would be even better if
no-one ever had to care because the rename happens straight
afterwards.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209576 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-24 12:42:26 +00:00
Renato Golin
5d7afdb2ec Avoids DCE on write_register
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209222 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-20 17:40:03 +00:00
Renato Golin
22f779d1fd Implememting named register intrinsics
This patch implements the infrastructure to use named register constructs in
programs that need access to specific registers (bare metal, kernels, etc).

So far, only the stack pointer is supported as a technology preview, but as it
is, the intrinsic can already support all non-allocatable registers from any
architecture.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208104 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-06 16:51:25 +00:00
Michael Zolotukhin
abd7ca0706 Revert r206749 till a final decision about the intrinsics is made.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207313 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-26 09:56:41 +00:00
Michael Zolotukhin
d329c79f16 Reapply r206732. This time without optimization of branches.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206749 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-21 12:01:33 +00:00
Chandler Carruth
81549a0a39 Revert r206732 which is causing llc to crash on most of the build bots.
Original commit message:
  Implement builtins for safe division: safe.sdiv.iN, safe.udiv.iN,
  safe.srem.iN, safe.urem.iN (iN = i8, i61, i32, or i64).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206735 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-21 07:11:15 +00:00
Michael Zolotukhin
7d5100d14e Implement builtins for safe division: safe.sdiv.iN, safe.udiv.iN, safe.srem.iN,
safe.urem.iN (iN = i8, i16, i32, or i64).



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206732 91177308-0d34-0410-b5e6-96231b3b80d8
2014-04-21 05:33:09 +00:00
Tim Northover
7b837d8c75 ARM64: initial backend import
This adds a second implementation of the AArch64 architecture to LLVM,
accessible in parallel via the "arm64" triple. The plan over the
coming weeks & months is to merge the two into a single backend,
during which time thorough code review should naturally occur.

Everything will be easier with the target in-tree though, hence this
commit.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205090 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-29 10:18:08 +00:00
Tim Northover
7c3e057ff4 Intrinsics: add LLVMHalfElementsVectorType constraint
This is like the LLVMMatchType, except the verifier checks that the
second argument is a vector with the same base type and half the
number of elements.

This will be used by the ARM64 backend.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205079 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-29 07:04:54 +00:00
Tim Northover
b7de4288bc Intrinsics: expand semantics of LLVMExtendedVectorType (& trunc)
These are used in the ARM backends to aid type-checking on patterns involving
intrinsics. By making sure one argument is an extended/truncated version of
another.

However, there's no reason to limit them to just vectors types. For example
AArch64 has the instruction "uqshrn sD, dN, #imm" which would naturally use an
intrinsic taking an i64 and returning an i32.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205003 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-28 12:31:39 +00:00
Renato Golin
c4b058f9e7 Add @llvm.clear_cache builtin
Implementing the LLVM part of the call to __builtin___clear_cache
which translates into an intrinsic @llvm.clear_cache and is lowered
by each target, either to a call to __clear_cache or nothing at all
incase the caches are unified.

Updating LangRef and adding some tests for the implemented architectures.
Other archs will have to implement the method in case this builtin
has to be compiled for it, since the default behaviour is to bail
unimplemented.

A Clang patch is required for the builtin to be lowered into the
llvm intrinsic. This will be done next.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204802 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-26 12:52:28 +00:00
Eli Bendersky
21354ec60d Expose "noduplicate" attribute as a property for intrinsics.
The "noduplicate" function attribute exists to prevent certain optimizations
from duplicating calls to the function. This is important on platforms where
certain function call duplications are unsafe (for example execution barriers
for CUDA and OpenCL).

This patch makes it possible to specify intrinsics as "noduplicate" and
translates that to the appropriate function attribute.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@204200 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-18 23:51:07 +00:00
Raul E. Silvera
8b6d60f94b Change math intrinsic attributes from readonly to readnone. These
are operations that do not access memory but may be sensitive
to floating-point environment changes. LLVM does not attempt
to model FP environment changes, so this was unnecessarily conservative
and was getting on the way of some optimizations, in particular
SLP vectorization.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203037 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-06 00:18:15 +00:00
Filip Pizlo
23ffb3ea10 Stackmaps are used for OSR exits, which is a custom kind of unwinding. Hence, they
should not be marked nounwind.

Marking them nounwind caused crashes in the WebKit FTL JIT, because if we enable 
sufficient optimizations, LLVM starts eliding compact_unwind sections (or any unwind 
data for that matter), making deoptimization via stackmaps impossible.

This changes the stackmap intrinsic to be may-throw, adds a test for exactly the 
sympton that WebKit saw, and fixes TableGen to handle un-attributed intrinsics.

Thanks to atrick and philipreames for reviewing this.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201826 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-20 23:57:31 +00:00
Andrew Trick
cd8314d63c Grow the stackmap/patchpoint format to hold 64-bit IDs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@197255 91177308-0d34-0410-b5e6-96231b3b80d8
2013-12-13 18:37:10 +00:00
Andrew Trick
ab7431b0d4 Add experimental stackmap intrinsics to definition file and documenation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193767 91177308-0d34-0410-b5e6-96231b3b80d8
2013-10-31 17:18:14 +00:00
Matt Arsenault
c4a8c07f64 Change objectsize intrinsic to accept different address spaces.
Bitcasting everything to i8* won't work. Autoupgrade the old
intrinsic declarations to use the new mangling.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192117 91177308-0d34-0410-b5e6-96231b3b80d8
2013-10-07 18:06:48 +00:00
Pete Cooper
da750239bd Add v4f16 to supported value types.
This is useful for some ARM intrinsics such as VCVTN which does a <4 x float> <-> <4 x half> conversion.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191870 91177308-0d34-0410-b5e6-96231b3b80d8
2013-10-03 03:29:21 +00:00
Jiangning Liu
477fc628b3 Initial support for Neon scalar instructions.
Patch by Ana Pazos.

1.Added support for v1ix and v1fx types.
2.Added Scalar Pairwise Reduce instructions.
3.Added initial implementation of Scalar Arithmetic instructions.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191263 91177308-0d34-0410-b5e6-96231b3b80d8
2013-09-24 02:47:27 +00:00
Hal Finkel
66d1fa6f4b Add a llvm.copysign intrinsic
This adds a llvm.copysign intrinsic; We already have Libfunc recognition for
copysign (which is turned into the FCOPYSIGN SDAG node). In order to
autovectorize calls to copysign in the loop vectorizer, we need a corresponding
intrinsic as well.

In addition to the expected changes to the language reference, the loop
vectorizer, BasicTTI, and the SDAG builder (the intrinsic is transformed into
an FCOPYSIGN node, just like the function call), this also adds FCOPYSIGN to a
few lists in LegalizeVector{Ops,Types} so that vector copysigns can be
expanded.

In TargetLoweringBase::initActions, I've made the default action for FCOPYSIGN
be Expand for vector types. This seems correct for all in-tree targets, and I
think is the right thing to do because, previously, there was no way to generate
vector-values FCOPYSIGN nodes (and most targets don't specify an action for
vector-typed FCOPYSIGN).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188728 91177308-0d34-0410-b5e6-96231b3b80d8
2013-08-19 23:35:46 +00:00
Jack Carter
d0f99639c1 [Mips][msa] Added the simple builtins (fadd to ftq)
Includes:
fadd, fceq, fcg[et], fclass, fcl[et], fcne, fcun, fdiv, fexdo, fexp2,
fexup[lr], ffint_[su], ffql, ffqr, fill, flog2, fmadd, fmax, fmax_a, fmin,
fmin_a, fmsub, fmul, frint, frcp, frsqrt, fseq, fsge, fsgt, fsle, fslt,
fsne, fsqr, fsub, ftint_s, ftq

Patch by Daniel Sanders


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188458 91177308-0d34-0410-b5e6-96231b3b80d8
2013-08-15 13:45:36 +00:00
Michael Gottesman
2a64a639e5 [stackprotector] Added intrinsic llvm.stackprotectorcheck.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188191 91177308-0d34-0410-b5e6-96231b3b80d8
2013-08-12 18:35:32 +00:00
Hal Finkel
41418d17cc Add ISD::FROUND for libm round()
All libm floating-point rounding functions, except for round(), had their own
ISD nodes. Recent PowerPC cores have an instruction for round(), and so here I'm
adding ISD::FROUND so that round() can be custom lowered as well.

For the most part, this is straightforward. I've added an intrinsic
and a matching ISD node just like those for nearbyint() and friends. The
SelectionDAG pattern I've named frnd (because ISD::FP_ROUND has already claimed
fround).

This will be used by the PowerPC backend in a follow-up commit.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187926 91177308-0d34-0410-b5e6-96231b3b80d8
2013-08-07 22:49:12 +00:00
Tim Northover
87773c318f AArch64: add initial NEON support
Patch by Ana Pazos.

- Completed implementation of instruction formats:
AdvSIMD three same
AdvSIMD modified immediate
AdvSIMD scalar pairwise

- Completed implementation of instruction classes
(some of the instructions in these classes
belong to yet unfinished instruction formats):
Vector Arithmetic
Vector Immediate
Vector Pairwise Arithmetic

- Initial implementation of instruction formats:
AdvSIMD scalar two-reg misc
AdvSIMD scalar three same

- Intial implementation of instruction class:
Scalar Arithmetic

- Initial clang changes to support arm v8 intrinsics.
Note: no clang changes for scalar intrinsics function name mangling yet.

- Comprehensive test cases for added instructions
To verify auto codegen, encoding, decoding, diagnosis, intrinsics.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187567 91177308-0d34-0410-b5e6-96231b3b80d8
2013-08-01 09:20:35 +00:00
Nick Lewycky
dc89737bcd Extend 'readonly' and 'readnone' to work on function arguments as well as
functions. Make the function attributes pass add it to known library functions
and when it can deduce it.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185735 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-06 00:29:58 +00:00
Derek Schuff
8a0d41e1a6 Make PrologEpilogInserter save/restore all callee saved registers
in functions which call __builtin_unwind_init()

__builtin_unwind_init() is an undocumented gcc intrinsic which has this effect,
and is used in libgcc_eh.

Goes part of the way toward fixing PR8541.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183984 91177308-0d34-0410-b5e6-96231b3b80d8
2013-06-14 16:15:29 +00:00
Michael Ilseman
4d0b4a45dc Support for half intrinsics. Pushes MMX into slower encoding path.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172159 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-11 01:45:05 +00:00
Chandler Carruth
0b8c9a80f2 Move all of the header files which are involved in modelling the LLVM IR
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.

There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.

The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.

I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).

I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-02 11:36:10 +00:00