Summary:
With this patch, range metadata can be added to call/invoke including
IntrinsicInst. Previously, it could only be added to load.
Rename computeKnownBitsLoad to computeKnownBitsFromRangeMetadata because
range metadata is not only used by load.
Update the language reference to reflect this change.
Test Plan:
Add several tests in range-2.ll to confirm the verifier is happy with
having range metadata on call/invoke.
Add two tests in AddOverFlow.ll to confirm annotating range metadata to
call/invoke can benefit InstCombine.
Reviewers: meheff, nlewycky, reames, hfinkel, eliben
Reviewed By: eliben
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4187
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211281 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
As a starting step, we only use one simple heuristic: if the sign bits
of both a and b are zero, we can prove "add a, b" do not unsigned
overflow, and thus convert it to "add nuw a, b".
Updated all affected tests and added two new tests (@zero_sign_bit and
@zero_sign_bit2) in AddOverflow.ll
Test Plan: make check-all
Reviewers: eliben, rafael, meheff, chandlerc
Reviewed By: chandlerc
Subscribers: chandlerc, llvm-commits
Differential Revision: http://reviews.llvm.org/D4144
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211084 91177308-0d34-0410-b5e6-96231b3b80d8
This patch implements two things:
1. If we know one number is positive and another is negative, we return true as
signed addition of two opposite signed numbers will never overflow.
2. Implemented TODO : If one of the operands only has one non-zero bit, and if
the other operand has a known-zero bit in a more significant place than it
(not including the sign bit) the ripple may go up to and fill the zero, but
won't change the sign. e.x - (x & ~4) + 1
We make sure that we are ignoring 0 at MSB.
Patch by Suyog Sarda.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210186 91177308-0d34-0410-b5e6-96231b3b80d8