instead of DomTree/DomFrontier. This may be interesting for reducing compile
time. This is currently disabled, but seems to work just fine.
When this is enabled, we eliminate two runs of dominator frontier, one in the
"early per-function" optimizations and one in the "interlaced with inliner"
function passes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123434 91177308-0d34-0410-b5e6-96231b3b80d8
- Fixed :upper16: fix up routine. It should be shifting down the top 16 bits first.
- Added support for Thumb2 :lower16: and :upper16: fix up.
- Added :upper16: and :lower16: relocation support to mach-o object writer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123424 91177308-0d34-0410-b5e6-96231b3b80d8
most important simplifications, as well as resolving phase ordering issues where instcombine
would inhibit important CSE'ing opportunities, for instance on BitBench/drop3.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123418 91177308-0d34-0410-b5e6-96231b3b80d8
While there, I noticed that the transform "undef >>a X -> undef" was wrong.
For example if X is 2 then the top two bits must be equal, so the result can
not be anything. I fixed this in the constant folder as well. Also, I made
the transform for "X << undef" stronger: it now folds to undef always, even
though X might be zero. This is in accordance with the LangRef, but I must
admit that it is fairly aggressive. Also, I added "i32 X << 32 -> undef"
following the LangRef and the constant folder, likewise fairly aggressive.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123417 91177308-0d34-0410-b5e6-96231b3b80d8
Add methods for accessing the (single) entry / exit edge of a region. If no such
edge exists, null is returned. Both accessors return the start block of the
corresponding edge. The edge can finally be formed by utilizing
Region::getEntry() or Region::getExit();
Contributed by: Andreas Simbuerger <simbuerg@fim.uni-passau.de>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123410 91177308-0d34-0410-b5e6-96231b3b80d8
the symbolic immediate names used for these instructions, fixing their pretty-printers, and
adding proper encoding information for them.
With this, we can properly pretty-print and encode assembly like:
mrc p15, #0, r3, c13, c0, #3
Fixes <rdar://problem/8857858>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123404 91177308-0d34-0410-b5e6-96231b3b80d8
set up the source operands. The original instr has an immediate operand that
should be replaced with the frame reg operand rather than just adding the
reg operand. Previously, the instruction ended up with too many operands
causing an assert() when adding the default predicate. rdar://8825456
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123387 91177308-0d34-0410-b5e6-96231b3b80d8
It will still return an iterator that points to the first terminator or end(),
but there may be DBG_VALUE instructions following the first terminator.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123384 91177308-0d34-0410-b5e6-96231b3b80d8
This is a minor extension of SROA to handle a special case that is
important for some ARM NEON operations. Some of the NEON intrinsics
return multiple values, which are handled as struct types containing
multiple elements of the same vector type. The corresponding return
types declared in the arm_neon.h header have equivalent arrays. We
need SROA to recognize that it can split up those arrays and structs
into separate vectors, even though they are not always accessed with
the same type. SROA already handles loads and stores of an entire
alloca by using insertvalue/extractvalue to access the individual
pieces, and that code works the same regardless of whether the type
is a struct or an array. So, all that needs to be done is to check
for compatible arrays and homogeneous structs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123381 91177308-0d34-0410-b5e6-96231b3b80d8
SROA only split up structs and arrays one level at a time, so padding can
only cause trouble if it is located in between the struct or array elements.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123380 91177308-0d34-0410-b5e6-96231b3b80d8
is "X != 0 -> X" when X is a boolean. This occurs a lot because of the way
llvm-gcc converts gcc's conditional expressions. Add this, and a few other
similar transforms for completeness.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123372 91177308-0d34-0410-b5e6-96231b3b80d8
in the right direction. It eliminated some hacks and will unblock codegen
work. But it's far from being done. It doesn't reject illegal expressions,
e.g. (FOO - :lower16:BAR). It also doesn't work in Thumb2 mode at all.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123369 91177308-0d34-0410-b5e6-96231b3b80d8
.code 32 if the TargetMachine's isThumb() boolean does not match. The correct
fix is to switch ARM subtargets at that point and is tracked by rdar://8856789
which is bigger task.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123353 91177308-0d34-0410-b5e6-96231b3b80d8