Problem: LLVM needs more function attributes than currently available (32 bits).
One such proposed attribute is "address_safety", which shows that a function is being checked for address safety (by AddressSanitizer, SAFECode, etc).
Solution:
- extend the Attributes from 32 bits to 64-bits
- wrap the object into a class so that unsigned is never erroneously used instead
- change "unsigned" to "Attributes" throughout the code, including one place in clang.
- the class has no "operator uint64 ()", but it has "uint64_t Raw() " to support packing/unpacking.
- the class has "safe operator bool()" to support the common idiom: if (Attributes attr = getAttrs()) useAttrs(attr);
- The CTOR from uint64_t is marked explicit, so I had to add a few explicit CTOR calls
- Add the new attribute "address_safety". Doing it in the same commit to check that attributes beyond first 32 bits actually work.
- Some of the functions from the Attribute namespace are worth moving inside the class, but I'd prefer to have it as a separate commit.
Tested:
"make check" on Linux (32-bit and 64-bit) and Mac (10.6)
built/run spec CPU 2006 on Linux with clang -O2.
This change will break clang build in lib/CodeGen/CGCall.cpp.
The following patch will fix it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148553 91177308-0d34-0410-b5e6-96231b3b80d8
LSR has gradually been improved to more aggressively reuse existing code, particularly existing phi cycles. This exposed problems with the SCEVExpander's sloppy treatment of its insertion point. I applied some rigor to the insertion point problem that will hopefully avoid an endless bug cycle in this area. Changes:
- Always used properlyDominates to check safe code hoisting.
- The insertion point provided to SCEV is now considered a lower bound. This is usually a block terminator or the use itself. Under no cirumstance may SCEVExpander insert below this point.
- LSR is reponsible for finding a "canonical" insertion point across expansion of different expressions.
- Robust logic to determine whether IV increments are in "expanded" form and/or can be safely hoisted above some insertion point.
Fixes PR11783: SCEVExpander assert.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148535 91177308-0d34-0410-b5e6-96231b3b80d8
It's becoming clear that LoopSimplify needs to unconditionally create loop preheaders. But that is a bigger fix. For now, continuing to hack LSR.
Fixes rdar://10701050 "Cannot split an edge from an IndirectBrInst" assert.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148288 91177308-0d34-0410-b5e6-96231b3b80d8
Message for r148132:
LoopUnswitch: All helper data that is collected during loop-unswitch iterations was moved to separated class (LUAnalysisCache).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148215 91177308-0d34-0410-b5e6-96231b3b80d8
the optimizer doesn't eliminate objc_retainBlock calls which are needed
for their side effect of copying blocks onto the heap.
This implements rdar://10361249.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148076 91177308-0d34-0410-b5e6-96231b3b80d8
1. Size heuristics changed. Now we calculate number of unswitching
branches only once per loop.
2. Some checks was moved from UnswitchIfProfitable to
processCurrentLoop, since it is not changed during processCurrentLoop
iteration. It allows decide to skip some loops at an early stage.
Extended statistics:
- Added total number of instructions analyzed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147935 91177308-0d34-0410-b5e6-96231b3b80d8
These heuristics are sufficient for enabling IV chains by
default. Performance analysis has been done for i386, x86_64, and
thumbv7. The optimization is rarely important, but can significantly
speed up certain cases by eliminating spill code within the
loop. Unrolled loops are prime candidates for IV chains. In many
cases, the final code could still be improved with more target
specific optimization following LSR. The goal of this feature is for
LSR to make the best choice of induction variables.
Instruction selection may not completely take advantage of this
feature yet. As a result, there could be cases of slight code size
increase.
Code size can be worse on x86 because it doesn't support postincrement
addressing. In fact, when chains are formed, you may see redundant
address plus stride addition in the addressing mode. GenerateIVChains
tries to compensate for the common cases.
On ARM, code size increase can be mitigated by using postincrement
addressing, but downstream codegen currently misses some opportunities.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147826 91177308-0d34-0410-b5e6-96231b3b80d8
After collecting chains, check if any should be materialized. If so,
hide the chained IV users from the LSR solver. LSR will only solve for
the head of the chain. GenerateIVChains will then materialize the
chained IV users by computing the IV relative to its previous value in
the chain.
In theory, chained IV users could be exposed to LSR's solver. This
would be considerably complicated to implement and I'm not aware of a
case where we need it. In practice it's more important to
intelligently prune the search space of nontrivial loops before
running the solver, otherwise the solver is often forced to prune the
most optimal solutions. Hiding the chained users does this well, so
that LSR is more likely to find the best IV for the chain as a whole.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147801 91177308-0d34-0410-b5e6-96231b3b80d8
This collects a set of IV uses within the loop whose values can be
computed relative to each other in a sequence. Following checkins will
make use of this information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147797 91177308-0d34-0410-b5e6-96231b3b80d8
This will be more important as we extend the LSR pass in ways that don't rely on the formula solver. In particular, we need it for constructing IV chains.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147724 91177308-0d34-0410-b5e6-96231b3b80d8
LoopSimplify may not run on some outer loops, e.g. because of indirect
branches. SCEVExpander simply cannot handle outer loops with no preheaders.
Fixes rdar://10655343 SCEVExpander segfault.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147718 91177308-0d34-0410-b5e6-96231b3b80d8
performance regressions (both execution-time and compile-time) on our
nightly testers.
Original commit message:
Fix for bug #11429: Wrong behaviour for switches. Small improvement for code
size heuristics.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147131 91177308-0d34-0410-b5e6-96231b3b80d8
into Analysis as a standalone function, since there's no need for
it to be in VMCore. Also, update it to use isKnownNonZero and
other goodies available in Analysis, making it more precise,
enabling more aggressive optimization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146610 91177308-0d34-0410-b5e6-96231b3b80d8
This should always be done as a matter of principal. I don't have a
case that exposes the problem. I just noticed this recently while
scanning the code and realized I meant to fix it long ago.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146438 91177308-0d34-0410-b5e6-96231b3b80d8