way for each TargetJITInfo subclass to allocate its own stubs. This
means stubs aren't as exactly-sized anymore, but it lets us get rid of
TargetJITInfo::emitFunctionStubAtAddr(), which lets ARM and PPC
support the eager JIT, fixing http://llvm.org/PR4816.
* Rename the JITEmitter's stub creation functions to describe the kind
of stub they create. So far, all of them create lazy-compilation
stubs, but they sometimes get used when far-call stubs are needed.
Fixing http://llvm.org/PR5201 will involve fixing this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@89715 91177308-0d34-0410-b5e6-96231b3b80d8
It's probably better in the long run to replace the
indirect-GlobalVariable system. That'll be done after a subsequent
patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@89708 91177308-0d34-0410-b5e6-96231b3b80d8
libffi support and that the interpreter can't call external functions without
it. Patch by Timo Juhani Lindfors! Fixes PR5466.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@89062 91177308-0d34-0410-b5e6-96231b3b80d8
The large code model is documented at
http://www.x86-64.org/documentation/abi.pdf and says that calls should
assume their target doesn't live within the 32-bit pc-relative offset
that fits in the call instruction.
To do this, we turn off the global-address->target-global-address
conversion in X86TargetLowering::LowerCall(). The first attempt at
this broke the lazy JIT because it can separate the movabs(imm->reg)
from the actual call instruction. The lazy JIT receives the address of
the movabs as a relocation and needs to record the return address from
the call; and then when that call happens, it needs to patch the
movabs with the newly-compiled target. We could thread the call
instruction into the relocation and record the movabs<->call mapping
explicitly, but that seems to require at least as much new
complication in the code generator as this change.
To fix this, we make lazy functions _always_ go through a call
stub. You'd think we'd only have to force lazy calls through a stub on
difficult platforms, but that turns out to break indirect calls
through a function pointer. The right fix for that is to distinguish
between calls and address-of operations on uncompiled functions, but
that's complex enough to leave for someone else to do.
Another attempt at this defined a new CALL64i pseudo-instruction,
which expanded to a 2-instruction sequence in the assembly output and
was special-cased in the X86CodeEmitter's emitInstruction()
function. That broke indirect calls in the same way as above.
This patch also removes a hack forcing Darwin to the small code model.
Without far-call-stubs, the small code model requires things of the
JITMemoryManager that the DefaultJITMemoryManager can't provide.
Thanks to echristo for lots of testing!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@88984 91177308-0d34-0410-b5e6-96231b3b80d8
MachineRelocations, "stub" always refers to a far-call stub or a
load-a-faraway-global stub, so this patch adds "Far" to the term. (Other stubs
are used for lazy compilation and dlsym address replacement.) The variable was
also inconsistent between the positive and negative sense, and the positive
sense ("NeedStub") was more demanding than is accurate (since a nearby-enough
function can be called directly even if the platform often requires a stub).
Since the negative sense causes double-negatives, I switched to
"MayNeedFarStub" globally.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86363 91177308-0d34-0410-b5e6-96231b3b80d8
of going through the global TheJIT variable. This makes it easier to use
features of JITEmitter that aren't in JITCodeEmitter for fixing PR5201.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86305 91177308-0d34-0410-b5e6-96231b3b80d8
now correctly runs clang's test/CodeGen/indirect-goto.c. The JIT will abort
on it until someone feels compelled to implement this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85488 91177308-0d34-0410-b5e6-96231b3b80d8
being destroyed. This allows users to run global optimizations like globaldce
even after some functions have been jitted.
This patch also removes the Function* parameter to
JITEventListener::NotifyFreeingMachineCode() since it can cause that to be
called when the Function is partially destroyed. This change will be even more
helpful later when I think we'll want to allow machine code to actually outlive
its Function.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85182 91177308-0d34-0410-b5e6-96231b3b80d8
Remove LowerAllocations pass.
Update some more passes to treate free calls just like they were treating FreeInst.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@85176 91177308-0d34-0410-b5e6-96231b3b80d8
compiled.
When functions are compiled, they accumulate references in the JITResolver's
stub maps. This patch removes those references when the functions are
destroyed. It's illegal to destroy a Function when any thread may still try to
call its machine code.
This patch also updates r83987 to use ValueMap instead of explicit CallbackVHs
and fixes a couple "do stuff inside assert()" bugs from r84522.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@84975 91177308-0d34-0410-b5e6-96231b3b80d8
JITEmitter.
I'm gradually making Functions auto-remove themselves from the JIT when they're
destroyed. In this case, the Function needs to be removed from the JITEmitter,
but the map recording which Functions need to be removed lived behind the
JITMemoryManager interface, which made things difficult.
This patch replaces the deallocateMemForFunction(Function*) method with a pair
of methods deallocateFunctionBody(void *) and deallocateExceptionTable(void *)
corresponding to the two startFoo/endFoo pairs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@84651 91177308-0d34-0410-b5e6-96231b3b80d8
The JITResolver maps Functions to their canonical stubs and all callsites for
lazily-compiled functions to their target Functions. To make Function
destruction work, I'm going to need to remove all callsites on destruction, so
this patch also adds the reverse mapping for that.
There was an incorrect assumption in here that the only stub for a function
would be the one caused by needing to lazily compile it, while x86-64 far calls
and dlsym-stubs could also cause such stubs, but I didn't look for a test case
that the assumption broke.
This also adds DenseMapInfo<AssertingVH> so I can use DenseMaps instead of
std::maps.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@84522 91177308-0d34-0410-b5e6-96231b3b80d8
GlobalValue is destroyed. Function destruction still leaks machine code and
can crash on leaked stubs, but this is some progress.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83987 91177308-0d34-0410-b5e6-96231b3b80d8
mappings, which could cause errors and assert-failures. This patch fixes that,
adds a test, and refactors the global-mapping-removal code into a single place.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83678 91177308-0d34-0410-b5e6-96231b3b80d8
the new predicates I added) instead of going through a context and doing a
pointer comparison. Besides being cheaper, this allows a smart compiler
to turn the if sequence into a switch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83297 91177308-0d34-0410-b5e6-96231b3b80d8
By the way, this code is buggy. You can't keep a map<MDNode *, something>
because the MDNode may be destroyed and reused for something else.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83141 91177308-0d34-0410-b5e6-96231b3b80d8
feature, either build the JIT in debug mode to enable it by default or pass
-jit-emit-debug to lli.
Right now, the only debug information that this communicates to GDB is call
frame information, since it's already being generated to support exceptions in
the JIT. Eventually, when DWARF generation isn't tied so tightly to AsmPrinter,
it will be easy to push that information to GDB through this interface.
Here's a step-by-step breakdown of how the feature works:
- The JIT generates the machine code and DWARF call frame info
(.eh_frame/.debug_frame) for a function into memory.
- The JIT copies that info into an in-memory ELF file with a symbol for the
function.
- The JIT creates a code entry pointing to the ELF buffer and adds it to a
linked list hanging off of a global descriptor at a special symbol that GDB
knows about.
- The JIT calls a function marked noinline that GDB knows about and has put an
internal breakpoint in.
- GDB catches the breakpoint and reads the global descriptor to look for new
code.
- When sees there is new code, it reads the ELF from the inferior's memory and
adds it to itself as an object file.
- The JIT continues, and the next time we stop the program, we are able to
produce a proper backtrace.
Consider running the following program through the JIT:
#include <stdio.h>
void baz(short z) {
long w = z + 1;
printf("%d, %x\n", w, *((int*)NULL)); // SEGFAULT here
}
void bar(short y) {
int z = y + 1;
baz(z);
}
void foo(char x) {
short y = x + 1;
bar(y);
}
int main(int argc, char** argv) {
char x = 1;
foo(x);
}
Here is a backtrace before this patch:
Program received signal SIGSEGV, Segmentation fault.
[Switching to Thread 0x2aaaabdfbd10 (LWP 25476)]
0x00002aaaabe7d1a8 in ?? ()
(gdb) bt
#0 0x00002aaaabe7d1a8 in ?? ()
#1 0x0000000000000003 in ?? ()
#2 0x0000000000000004 in ?? ()
#3 0x00032aaaabe7cfd0 in ?? ()
#4 0x00002aaaabe7d12c in ?? ()
#5 0x00022aaa00000003 in ?? ()
#6 0x00002aaaabe7d0aa in ?? ()
#7 0x01000002abe7cff0 in ?? ()
#8 0x00002aaaabe7d02c in ?? ()
#9 0x0100000000000001 in ?? ()
#10 0x00000000014388e0 in ?? ()
#11 0x00007fff00000001 in ?? ()
#12 0x0000000000b870a2 in llvm::JIT::runFunction (this=0x1405b70,
F=0x14024e0, ArgValues=@0x7fffffffe050)
at /home/rnk/llvm-gdb/lib/ExecutionEngine/JIT/JIT.cpp:395
#13 0x0000000000baa4c5 in llvm::ExecutionEngine::runFunctionAsMain
(this=0x1405b70, Fn=0x14024e0, argv=@0x13f06f8, envp=0x7fffffffe3b0)
at /home/rnk/llvm-gdb/lib/ExecutionEngine/ExecutionEngine.cpp:377
#14 0x00000000007ebd52 in main (argc=2, argv=0x7fffffffe398,
envp=0x7fffffffe3b0) at /home/rnk/llvm-gdb/tools/lli/lli.cpp:208
And a backtrace after this patch:
Program received signal SIGSEGV, Segmentation fault.
0x00002aaaabe7d1a8 in baz ()
(gdb) bt
#0 0x00002aaaabe7d1a8 in baz ()
#1 0x00002aaaabe7d12c in bar ()
#2 0x00002aaaabe7d0aa in foo ()
#3 0x00002aaaabe7d02c in main ()
#4 0x0000000000b870a2 in llvm::JIT::runFunction (this=0x1405b70,
F=0x14024e0, ArgValues=...)
at /home/rnk/llvm-gdb/lib/ExecutionEngine/JIT/JIT.cpp:395
#5 0x0000000000baa4c5 in llvm::ExecutionEngine::runFunctionAsMain
(this=0x1405b70, Fn=0x14024e0, argv=..., envp=0x7fffffffe3c0)
at /home/rnk/llvm-gdb/lib/ExecutionEngine/ExecutionEngine.cpp:377
#6 0x00000000007ebd52 in main (argc=2, argv=0x7fffffffe3a8,
envp=0x7fffffffe3c0) at /home/rnk/llvm-gdb/tools/lli/lli.cpp:208
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@82418 91177308-0d34-0410-b5e6-96231b3b80d8