code hints that it would be a good idea to inline
a function ("inline" keyword). No functional change
yet; FEs do not emit this and inliner does not use it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80063 91177308-0d34-0410-b5e6-96231b3b80d8
"private" symbols which the assember shouldn't strip, but which the linker may
remove after evaluation. This is mostly useful for Objective-C metadata.
This is plumbing, so we don't have a use of it yet. More to come, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@76385 91177308-0d34-0410-b5e6-96231b3b80d8
default global context, while new *InContext() APIs have been added that take a LLVMContextRef parameter.
Apologies to anyone affected by this breakage.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74694 91177308-0d34-0410-b5e6-96231b3b80d8
of the bitcode reader and ASM parser APIs, as well as supporting it in all of the tools.
Patches for Clang and LLVM-GCC to follow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74614 91177308-0d34-0410-b5e6-96231b3b80d8
linkage: this linkage type only applies to declarations,
but ODR is only relevant to globals with definitions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66650 91177308-0d34-0410-b5e6-96231b3b80d8
and extern_weak_odr. These are the same as the non-odr versions,
except that they indicate that the global will only be overridden
by an *equivalent* global. In C, a function with weak linkage can
be overridden by a function which behaves completely differently.
This means that IP passes have to skip weak functions, since any
deductions made from the function definition might be wrong, since
the definition could be replaced by something completely different
at link time. This is not allowed in C++, thanks to the ODR
(One-Definition-Rule): if a function is replaced by another at
link-time, then the new function must be the same as the original
function. If a language knows that a function or other global can
only be overridden by an equivalent global, it can give it the
weak_odr linkage type, and the optimizers will understand that it
is alright to make deductions based on the function body. The
code generators on the other hand map weak and weak_odr linkage
to the same thing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@66339 91177308-0d34-0410-b5e6-96231b3b80d8
- ability to insert previously created instructions using a builder
- creation of aliases
- creation of inline asm constants
Patch by Zoltan Varga!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61153 91177308-0d34-0410-b5e6-96231b3b80d8
s/ParamAttr/Attribute/g
s/PAList/AttrList/g
s/FnAttributeWithIndex/AttributeWithIndex/g
s/FnAttr/Attribute/g
This sets the stage
- to implement function notes as function attributes and
- to distinguish between function attributes and return value attributes.
This requires corresponding changes in llvm-gcc and clang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56622 91177308-0d34-0410-b5e6-96231b3b80d8
In particular, Collector was confusing to implementors. Several
thought that this compile-time class was the place to implement
their runtime GC heap. Of course, it doesn't even exist at runtime.
Specifically, the renames are:
Collector -> GCStrategy
CollectorMetadata -> GCFunctionInfo
CollectorModuleMetadata -> GCModuleInfo
CollectorRegistry -> GCRegistry
Function::getCollector -> getGC (setGC, hasGC, clearGC)
Several accessors and nested types have also been renamed to be
consistent. These changes should be obvious.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@54899 91177308-0d34-0410-b5e6-96231b3b80d8