Commit Graph

2555 Commits

Author SHA1 Message Date
Juergen Ributzka
d0995fb982 [SwitchLowering] Fix the "fixPhis" function.
Switch statements may have more than one incoming edge into the same BB if they
all have the same value. When the switch statement is converted these incoming
edges are now coming from multiple BBs. Updating all incoming values to be from
a single BB is incorrect and would generate invalid LLVM IR.

The fix is to only update the first occurrence of an incoming value. Switch
lowering will perform subsequent calls to this helper function for each incoming
edge with a new basic block - updating all edges in the process.

This fixes rdar://problem/18916275.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221627 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-10 21:05:27 +00:00
Vasileios Kalintiris
2d268749a5 Fix extra semicolon warning. NFC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221613 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-10 17:37:53 +00:00
Saleem Abdulrasool
bbfcec17e4 Transforms: address some late comments
We already use the llvm namespace.  Remove the unnecessary prefix.  Use the
StringRef::equals method to compare with C strings rather than instantiating
std::strings.

Addresses late review comments from David Majnemer.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221564 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-08 00:00:50 +00:00
Saleem Abdulrasool
8724a6db6b Transforms: sort source files in build
Sort target sources.  NFC.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221563 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-08 00:00:47 +00:00
Saleem Abdulrasool
6faf6b1833 Transforms: use typedef rather than using aliases
Visual Studio 2012 apparently does not support using alias declarations.  Use
the more traditional typedef approach.  This should let the Windows buildbots
pass.  NFC.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221554 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-07 22:09:52 +00:00
Saleem Abdulrasool
35c163020a Transform: add SymbolRewriter pass
This introduces the symbol rewriter. This is an IR->IR transformation that is
implemented as a CodeGenPrepare pass. This allows for the transparent
adjustment of the symbols during compilation.

It provides a clean, simple, elegant solution for symbol inter-positioning. This
technique is often used, such as in the various sanitizers and performance
analysis.

The control of this is via a custom YAML syntax map file that indicates source
to destination mapping, so as to avoid having the compiler to know the exact
details of the source to destination transformations.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221548 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-07 21:32:08 +00:00
Michael Ilseman
9f59bc4a0d Fix heap-use-after-free bug in expandSDiv when the operands are
constants, as discovered by ASAN.

Patch by Mehdi Amini!



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221401 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-05 21:28:24 +00:00
Mark Heffernan
ffb62b7e77 Revert earlier change removing setPreservesCFG from instcombine (r221223) and
change LoopSimplifyPass to be !isCFGOnly.  The motivation for the earlier patch
(r221223) was that LoopSimplify is not preserved by instcombine though
setPreservesCFG indicates that it is.  This change fixes the issue
by making setPreservesCFG no longer imply LoopSimplifyPass, and is therefore less
invasive.




git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221311 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-04 23:02:09 +00:00
Reid Kleckner
9d18e626cc Revert "Transforms: reapply SVN r219899"
This reverts commit r220811 and r220839. It made an incorrect change to
musttail handling.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221226 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-04 02:02:14 +00:00
Duncan P. N. Exon Smith
5e84760dde IR: MDNode => Value: Instruction::getAllMetadataOtherThanDebugLoc()
Change `Instruction::getAllMetadataOtherThanDebugLoc()` from a vector of
`MDNode` to one of `Value`.  Part of PR21433.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221167 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-03 18:13:57 +00:00
Duncan P. N. Exon Smith
b2187ede9e IR: MDNode => Value: Instruction::getAllMetadata()
Change `Instruction::getAllMetadata()` to modify a vector of `Value`
instead of `MDNode` and update call sites.  This is part of PR21433.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221027 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-01 00:26:42 +00:00
Duncan P. N. Exon Smith
3a84a6377c IR: MDNode => Value: Instruction::getMetadata()
Change `Instruction::getMetadata()` to return `Value` as part of
PR21433.

Update most callers to use `Instruction::getMDNode()`, which wraps the
result in a `cast_or_null<MDNode>`.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221024 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-01 00:10:31 +00:00
Saleem Abdulrasool
586cf3d88d Transforms: reapply SVN r219899
This restores the commit from SVN r219899 with an additional change to ensure
that the CodeGen is correct for the case that was identified as being incorrect
(originally PR7272).

In the case that during inlining we need to synthesize a value on the stack
(i.e. for passing a value byval), then any function involving that alloca must
be stripped of its tailness as the restriction that it does not access the
parent's stack no longer holds.  Unfortunately, a single alloca can cause a
rippling effect through out the inlining as the value may be aliased or may be
mutated through an escaped external call.  As such, we simply track if an alloca
has been introduced in the frame during inlining, and strip any tail calls.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220811 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-28 18:27:37 +00:00
NAKAMURA Takumi
0f06462959 Untabify and whitespace cleanups.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220771 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-28 11:53:30 +00:00
Sanjay Patel
d2153694e0 Handle sqrt() shrinking in SimplifyLibCalls like any other call
This patch removes a chunk of special case logic for folding 
(float)sqrt((double)x) -> sqrtf(x)
in InstCombineCasts and handles it in the mainstream path of SimplifyLibCalls.

No functional change intended, but I loosened the restriction on the existing
sqrt testcases to allow for this optimization even without unsafe-fp-math because
that's the existing behavior.

I also added a missing test case for not shrinking the llvm.sqrt.f64 intrinsic
in case the result is used as a double.

Differential Revision: http://reviews.llvm.org/D5919



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220514 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-23 21:52:45 +00:00
Philip Reames
1b8af6a8f0 Preserving 'nonnull' metadata in SimplifyCFG
When we hoist two loads above an if, we can preserve the nonnull metadata.  We could also do the same for sinking them, but we appear to not handle metadata at all in that case.

Thanks to Hal for the review.

Differential Revision: http://reviews.llvm.org/D5910



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220392 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-22 16:37:13 +00:00
Sanjay Patel
dc18ebc4b1 Shrinkify libcalls: use float versions of double libm functions with fast-math (bug 17850)
When a call to a double-precision libm function has fast-math semantics 
(via function attribute for now because there is no IR-level FMF on calls), 
we can avoid fpext/fptrunc operations and use the float version of the call
if the input and output are both float.

We already do this optimization using a command-line option; this patch just
adds the ability for fast-math to use the existing functionality.

I moved the cl::opt from InstructionCombining into SimplifyLibCalls because
it's only ever used internally to that class.

Modified the existing test cases to use the unsafe-fp-math attribute rather
than repeating all tests.

This patch should solve: http://llvm.org/bugs/show_bug.cgi?id=17850

Differential Revision: http://reviews.llvm.org/D5893



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220390 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-22 15:29:23 +00:00
Philip Reames
5b69592c5a Teach combineMetadata how to merge 'nonnull' metadata.
combineMetadata is used when merging two instructions into one.  This change teaches it how to merge 'nonnull' - i.e. only preserve it on the new instruction if it's set on both sources.  This isn't actually used yet since I haven't adjusted any of the call sites to pass in nonnull as a 'known metadata'.  



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220325 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-21 21:02:19 +00:00
Paul Robinson
f8c9d3d3c2 Do not attribute static allocas to the call site's DebugLoc.
When functions are inlined, instructions without debug information are
attributed to the call site's DebugLoc. After inlining, inlined static
allocas are moved to the caller's entry block, adjacent to the caller's
original static alloca instructions. By retaining the call site's
DebugLoc, these instructions could cause instructions that were
subsequently inserted at the entry block to pick up the same DebugLoc.

Patch by Wolfgang Pieb!


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220255 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-21 01:00:55 +00:00
Sanjay Patel
d8214db086 fold: sqrt(x * x * y) -> fabs(x) * sqrt(y)
If a square root call has an FP multiplication argument that can be reassociated,
then we can hoist a repeated factor out of the square root call and into a fabs().

In the simplest case, this:

   y = sqrt(x * x);

becomes this:

   y = fabs(x);

This patch relies on an earlier optimization in instcombine or reassociate to put the
multiplication tree into a canonical form, so we don't have to search over
every permutation of the multiplication tree.

Because there are no IR-level FastMathFlags for intrinsics (PR21290), we have to
use function-level attributes to do this optimization. This needs to be fixed
for both the intrinsics and in the backend.

Differential Revision: http://reviews.llvm.org/D5787



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219944 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-16 18:48:17 +00:00
Hal Finkel
43141a0764 Preserve non-byval pointer alignment attributes using @llvm.assume when inlining
For pointer-typed function arguments, enhanced alignment can be asserted using
the 'align' attribute. When inlining, if this enhanced alignment information is
not otherwise available, preserve it using @llvm.assume-based alignment
assumptions.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219876 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-15 23:44:41 +00:00
Sanjay Patel
3f349b2ba8 Optimize away fabs() calls when input is squared (known positive).
Eliminate library calls and intrinsic calls to fabs when the input 
is a squared value.

Note that no unsafe-math / fast-math assumptions are needed for
this optimization.

Differential Revision: http://reviews.llvm.org/D5777



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219717 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-14 20:43:11 +00:00
Marcello Maggioni
db9fed93fa Switch to select optimization for two-case switches
This is the same optimization of r219233 with modifications to support PHIs with multiple incoming edges from the same block
and a test to check that this condition is handled.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219656 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-14 01:58:26 +00:00
Joerg Sonnenberger
c6133c17e0 Revert r219223, it creates invalid PHI nodes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219587 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-12 17:16:04 +00:00
Arnold Schwaighofer
dd8c386432 SimplifyCFG: Don't convert phis into selects if we could remove undef behavior
instead

We used to transform this:

  define void @test6(i1 %cond, i8* %ptr) {
  entry:
    br i1 %cond, label %bb1, label %bb2

  bb1:
    br label %bb2

  bb2:
    %ptr.2 = phi i8* [ %ptr, %entry ], [ null, %bb1 ]
    store i8 2, i8* %ptr.2, align 8
    ret void
  }

into this:

  define void @test6(i1 %cond, i8* %ptr) {
    %ptr.2 = select i1 %cond, i8* null, i8* %ptr
    store i8 2, i8* %ptr.2, align 8
    ret void
  }

because the simplifycfg transformation into selects would happen to happen
before the simplifycfg transformation that removes unreachable control flow
(We have 'unreachable control flow' due to the store to null which is undefined
behavior).

The existing transformation that removes unreachable control flow in simplifycfg
is:

  /// If BB has an incoming value that will always trigger undefined behavior
  /// (eg. null pointer dereference), remove the branch leading here.
  static bool removeUndefIntroducingPredecessor(BasicBlock *BB)

Now we generate:

  define void @test6(i1 %cond, i8* %ptr) {
    store i8 2, i8* %ptr.2, align 8
    ret void
  }

I did not see any impact on the test-suite + externals.

rdar://18596215

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219462 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-10 01:27:02 +00:00
Duncan P. N. Exon Smith
de7465af34 LoopUnroll: Create sub-loops in LoopInfo
`LoopUnrollPass` says that it preserves `LoopInfo` -- make it so.  In
particular, tell `LoopInfo` about copies of inner loops when unrolling
the outer loop.

Conservatively, also tell `ScalarEvolution` to forget about the original
versions of these loops, since their inputs may have changed.

Fixes PR20987.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219241 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-07 21:19:00 +00:00
Duncan P. N. Exon Smith
9b303dcf12 LoopUnroll: Only check for ScalarEvolution analysis once, NFC
A follow-up commit will add use to a tight loop.  We might as well just
find it once anyway.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219239 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-07 21:12:44 +00:00
Marcello Maggioni
5c98f14b78 Two case switch to select optimization
This optimization tries to convert switch instructions that are used to select a value with only 2 unique cases + default block
to a select or a couple of selects (depending if the default block is reachable or not).

The typical case this optimization wants to be able to optimize is this one:

Example:
switch (a) {
  case 10:                %0 = icmp eq i32 %a, 10
    return 10;            %1 = select i1 %0, i32 10, i32 4
  case 20:        ---->   %2 = icmp eq i32 %a, 20
    return 2;             %3 = select i1 %2, i32 2, i32 %1
  default:
    return 4;
}

It also sets the base for further optimizations that are planned and being reviewed.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219223 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-07 18:16:44 +00:00
Duncan P. N. Exon Smith
9aba1898be LoopUnroll: Change code order of changes to new basic blocks
Add new basic blocks to `LoopInfo` earlier.  No functionality change
intended (simplifies upcoming bugfix patch).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219150 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-06 22:05:02 +00:00
Duncan P. N. Exon Smith
703bd8d0e2 Sink comment, NFC
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219149 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-06 22:04:59 +00:00
Duncan P. N. Exon Smith
d045b8439a DIBuilder: Encapsulate DIExpression's element type
`DIExpression`'s elements are 64-bit integers that are stored as
`ConstantInt`.  The accessors already encapsulate the storage.  This
commit updates the `DIBuilder` API to also encapsulate that.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218797 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-01 20:26:08 +00:00
Adrian Prantl
02474a32eb Move the complex address expression out of DIVariable and into an extra
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.

Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.

By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.

The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)

This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.

What this patch doesn't do:

This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.

http://reviews.llvm.org/D4919
rdar://problem/17994491

Thanks to dblaikie and dexonsmith for reviewing this patch!

Note: I accidentally committed a bogus older version of this patch previously.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218787 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-01 18:55:02 +00:00
Adrian Prantl
10c4265675 Revert r218778 while investigating buldbot breakage.
"Move the complex address expression out of DIVariable and into an extra"

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218782 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-01 18:10:54 +00:00
Adrian Prantl
076fd5dfc1 Move the complex address expression out of DIVariable and into an extra
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.

Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.

By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.

The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)

This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.

What this patch doesn't do:

This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.

http://reviews.llvm.org/D4919
rdar://problem/17994491

Thanks to dblaikie and dexonsmith for reviewing this patch!

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218778 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-01 17:55:39 +00:00
Tom Stellard
6a0fcf7f53 C API: Add LLVMCloneModule()
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218775 91177308-0d34-0410-b5e6-96231b3b80d8
2014-10-01 17:14:57 +00:00
Jingyue Wu
9cd9e4bb2c [SimplifyCFG] threshold for folding branches with common destination
Summary:
This patch adds a threshold that controls the number of bonus instructions
allowed for folding branches with common destination. The original code allows
at most one bonus instruction. With this patch, users can customize the
threshold to allow multiple bonus instructions. The default threshold is still
1, so that the code behaves the same as before when users do not specify this
threshold.

The motivation of this change is that tuning this threshold significantly (up
to 25%) improves the performance of some CUDA programs in our internal code
base. In general, branch instructions are very expensive for GPU programs.
Therefore, it is sometimes worth trading more arithmetic computation for a more
straightened control flow. Here's a reduced example:

  __global__ void foo(int a, int b, int c, int d, int e, int n,
                      const int *input, int *output) {
    int sum = 0;
    for (int i = 0; i < n; ++i)
      sum += (((i ^ a) > b) && (((i | c ) ^ d) > e)) ? 0 : input[i];
    *output = sum;
  }

The select statement in the loop body translates to two branch instructions "if
((i ^ a) > b)" and "if (((i | c) ^ d) > e)" which share a common destination.
With the default threshold, SimplifyCFG is unable to fold them, because
computing the condition of the second branch "(i | c) ^ d > e" requires two
bonus instructions. With the threshold increased, SimplifyCFG can fold the two
branches so that the loop body contains only one branch, making the code
conceptually look like:

  sum += (((i ^ a) > b) & (((i | c ) ^ d) > e)) ? 0 : input[i];

Increasing the threshold significantly improves the performance of this
particular example. In the configuration where both conditions are guaranteed
to be true, increasing the threshold from 1 to 2 improves the performance by
18.24%. Even in the configuration where the first condition is false and the
second condition is true, which favors shortcuts, increasing the threshold from
1 to 2 still improves the performance by 4.35%.

We are still looking for a good threshold and maybe a better cost model than
just counting the number of bonus instructions. However, according to the above
numbers, we think it is at least worth adding a threshold to enable more
experiments and tuning. Let me know what you think. Thanks!

Test Plan: Added one test case to check the threshold is in effect

Reviewers: nadav, eliben, meheff, resistor, hfinkel

Reviewed By: hfinkel

Subscribers: hfinkel, llvm-commits

Differential Revision: http://reviews.llvm.org/D5529

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218711 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-30 22:23:38 +00:00
Kevin Qin
dbaeb6e7cb Use a loop to simplify the runtime unrolling prologue.
Runtime unrolling will create a prologue to execute the extra
iterations which is can't divided by the unroll factor. It
generates an if-then-else sequence to jump into a factor -1
times unrolled loop body, like

    extraiters = tripcount % loopfactor
    if (extraiters == 0) jump Loop:
    if (extraiters == loopfactor) jump L1
    if (extraiters == loopfactor-1) jump L2
    ...
    L1:  LoopBody;
    L2:  LoopBody;
    ...
    if tripcount < loopfactor jump End
    Loop:
    ...
    End:

It means if the unroll factor is 4, the loop body will be 7
times unrolled, 3 are in loop prologue, and 4 are in the loop.
This commit is to use a loop to execute the extra iterations
in prologue, like

        extraiters = tripcount % loopfactor
        if (extraiters == 0) jump Loop:
        else jump Prol
 Prol:  LoopBody;
        extraiters -= 1                 // Omitted if unroll factor is 2.
        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
        if (tripcount < loopfactor) jump End
 Loop:
 ...
 End:

Then when unroll factor is 4, the loop body will be copied by
only 5 times, 1 in the prologue loop, 4 in the original loop.
And if the unroll factor is 2, new loop won't be created, just
as the original solution.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218604 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-29 11:15:00 +00:00
Reid Kleckner
8577eaf8e6 GlobalOpt: Preserve comdats of unoptimized initializers
Rather than slurping in and splatting out the whole ctor list, preserve
the existing array entries without trying to understand them.  Only
remove the entries that we know we can optimize away.  This way we don't
need to wire through priority and comdats or anything else we might add.

Fixes a linker issue where the .init_array or .ctors entry would point
to discarded initialization code if the comdat group from the TU with
the faulty global_ctors entry was dropped.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218337 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-23 22:33:01 +00:00
Chris Bieneman
6ba12f9f72 Fixing a build error.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217983 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-17 21:06:59 +00:00
Chris Bieneman
14f9a54a8b Refactoring SimplifyLibCalls to remove static initializers and generally cleaning up the code.
Summary: This eliminates ~200 lines of code mostly file scoped struct definitions that were unnecessary.

Reviewers: chandlerc, resistor

Reviewed By: resistor

Subscribers: morisset, resistor, llvm-commits

Differential Revision: http://reviews.llvm.org/D5364

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217982 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-17 20:55:46 +00:00
Jingyue Wu
5e49dcf79a Remove dead code in SimplifyCFG
Summary: UsedByBranch is always true according to how BonusInst is defined.

Test Plan:
Passes check-all, and also verified 

if (BonusInst && !UsedByBranch) {
  ...
}

is never entered during check-all.

Reviewers: resistor, nadav, jingyue

Reviewed By: jingyue

Subscribers: llvm-commits, eliben, meheff

Differential Revision: http://reviews.llvm.org/D5324

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217824 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-15 20:48:13 +00:00
Benjamin Kramer
e853a8665e Simplify code. No functionality change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217726 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-13 12:38:49 +00:00
Hal Finkel
851b04c920 Make use of @llvm.assume in ValueTracking (computeKnownBits, etc.)
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.

As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.

The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.

Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.

This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217342 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-07 18:57:58 +00:00
Hal Finkel
3666e7f4c1 Add an Assumption-Tracking Pass
This adds an immutable pass, AssumptionTracker, which keeps a cache of
@llvm.assume call instructions within a module. It uses callback value handles
to keep stale functions and intrinsics out of the map, and it relies on any
code that creates new @llvm.assume calls to notify it of the new instructions.
The benefit is that code needing to find @llvm.assume intrinsics can do so
directly, without scanning the function, thus allowing the cost of @llvm.assume
handling to be negligible when none are present.

The current design is intended to be lightweight. We don't keep track of
anything until we need a list of assumptions in some function. The first time
this happens, we scan the function. After that, we add/remove @llvm.assume
calls from the cache in response to registration calls and ValueHandle
callbacks.

There are no new direct test cases for this pass, but because it calls it
validation function upon module finalization, we'll pick up detectable
inconsistencies from the other tests that touch @llvm.assume calls.

This pass will be used by follow-up commits that make use of @llvm.assume.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217334 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-07 12:44:26 +00:00
James Molloy
1c9848f305 Enable noalias metadata by default and swap the order of the SLP and Loop vectorizers by default.
After some time maturing, hopefully the flags themselves will be removed.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217144 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-04 13:23:08 +00:00
Hal Finkel
32418db285 Feed AA to the inliner and use AA->getModRefBehavior in AddAliasScopeMetadata
This feeds AA through the IFI structure into the inliner so that
AddAliasScopeMetadata can use AA->getModRefBehavior to figure out which
functions only access their arguments (instead of just hard-coding some
knowledge of memory intrinsics). Most of the information is only available from
BasicAA; this is important for preserving alias scoping information for
target-specific intrinsics when doing the noalias parameter attribute to
metadata conversion.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216866 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-01 09:01:39 +00:00
Hal Finkel
5581563457 Fix AddAliasScopeMetadata again - alias.scope must be a complete description
I thought that I had fixed this problem in r216818, but I did not do a very
good job. The underlying issue is that when we add alias.scope metadata we are
asserting that this metadata completely describes the aliasing relationships
within the current aliasing scope domain, and so in the context of translating
noalias argument attributes, the pointers must all be based on noalias
arguments (as underlying objects) and have no other kind of underlying object.
In r216818 excluding appropriate accesses from getting alias.scope metadata is
done by looking for underlying objects that are not identified function-local
objects -- but that's wrong because allocas, etc. are also function-local
objects and we need to explicitly check that all underlying objects are the
noalias arguments for which we're adding metadata aliasing scopes.

This fixes the underlying-object check for adding alias.scope metadata, and
does some refactoring of the related capture-checking eligibility logic (and
adds more comments; hopefully making everything a bit clearer).

Fixes self-hosting on x86_64 with -mllvm -enable-noalias-to-md-conversion (the
feature is still disabled by default).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216863 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-01 04:26:40 +00:00
Hal Finkel
bd896c1b25 Fix AddAliasScopeMetadata to not add scopes when deriving from unknown pointers
The previous implementation of AddAliasScopeMetadata, which adds noalias
metadata to preserve noalias parameter attribute information when inlining had
a flaw: it would add alias.scope metadata to accesses which might have been
derived from pointers other than noalias function parameters. This was
incorrect because even some access known not to alias with all noalias function
parameters could easily alias with an access derived from some other pointer.
Instead, when deriving from some unknown pointer, we cannot add alias.scope
metadata at all. This fixes a miscompile of the test-suite's tramp3d-v4.
Furthermore, we cannot add alias.scope to functions unless we know they
access only argument-derived pointers (currently, we know this only for
memory intrinsics).

Also, we fix a theoretical problem with using the NoCapture attribute to skip
the capture check. This is incorrect (as explained in the comment added), but
would not matter in any code generated by Clang because we get only inferred
nocapture attributes in Clang-generated IR.

This functionality is not yet enabled by default.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216818 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-30 12:48:33 +00:00
Hal Finkel
4f66dd7fc6 Fix a typo in AddAliasScopeMetadata
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216741 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-29 16:33:41 +00:00
Craig Topper
3512034554 Simplify creation of a bunch of ArrayRefs by using None, makeArrayRef or just letting them be implicitly created.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216525 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-27 05:25:25 +00:00