Unaligned access is supported on PPC for non-vector types, and is generally
more efficient than manually expanding the loads and stores.
A few of the existing test cases were using expanded unaligned loads and stores
to test other features (like load/store with update), and for these test cases,
unaligned access remains disabled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177160 91177308-0d34-0410-b5e6-96231b3b80d8
In preparation for the addition of other SIMD ISA extensions (such as QPX) we
need to make sure that all Altivec patterns are properly predicated on having
Altivec support.
No functionality change intended (one test case needed to be updated b/c it
assumed that Altivec intrinsics would be supported without enabling Altivec
support).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177152 91177308-0d34-0410-b5e6-96231b3b80d8
This is a very late complement to r130637 which fixed this on x86_64. Fixes
pr15448.
Since it looks like that every elf architecture uses this encoding when using
cfi, make it the default for elf. Just exclude mips64el. It has a lovely
.ll -> .o test (ef_frame.ll) that tests that nothing changes in the binary
content of the .eh_frame produced by llc. Oblige it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177141 91177308-0d34-0410-b5e6-96231b3b80d8
For spills into a large stack frame, the FI-elimination code uses the register
scavenger to obtain a free GPR for use with an r+r-addressed load or store.
When there are no available GPRs, the scavenger gets one by using its spill
slot. Previously, we were not always allocating that spill slot and the RS
would assert when the spill slot was needed.
I don't currently have a small test that triggered the assert, but I've
created a small regression test that verifies that the spill slot is now
added when the stack frame is sufficiently large.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177140 91177308-0d34-0410-b5e6-96231b3b80d8
We used to add a spill slot for the register scavenger whenever the function
has a frame pointer. This is unnecessarily conservative: We may need the spill
slot for dynamic stack allocations, and functions with dynamic stack
allocations always have a FP, but we might also have a FP for other reasons
(such as the user explicitly disabling frame-pointer elimination), and we don't
necessarily need a spill slot for those functions.
The structsinregs test needed adjustment because it disables FP elimination.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177106 91177308-0d34-0410-b5e6-96231b3b80d8
By terrible I mean we store/load from the stack.
This matters on PAQp8 in _Z5trainPsS_ii (which is inlined into Mixer::update)
where we decide to vectorize a loop with a VF of 8 resulting in a 25%
degradation on a cortex-a8.
LV: Found an estimated cost of 2 for VF 8 For instruction: icmp slt i32
LV: Found an estimated cost of 2 for VF 8 For instruction: select i1, i32, i32
The bug that tracks the CodeGen part is PR14868.
radar://13403975
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177105 91177308-0d34-0410-b5e6-96231b3b80d8
We generate a select with a vectorized condition argument when the condition is
NOT loop invariant. Not the other way around.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177098 91177308-0d34-0410-b5e6-96231b3b80d8
Rules include:
1)1 x*y +/- x*z => x*(y +/- z)
(the order of operands dosen't matter)
2) y/x +/- z/x => (y +/- z)/x
The transformation is disabled if the new add/sub expr "y +/- z" is a
denormal/naz/inifinity.
rdar://12911472
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177088 91177308-0d34-0410-b5e6-96231b3b80d8
The fundamental problem is that SROA didn't allow for overly wide loads
where the bits past the end of the alloca were masked away and the load
was sufficiently aligned to ensure there is no risk of page fault, or
other trapping behavior. With such widened loads, SROA would delete the
load entirely rather than clamping it to the size of the alloca in order
to allow mem2reg to fire. This was exposed by a test case that neatly
arranged for GVN to run first, widening certain loads, followed by an
inline step, and then SROA which miscompiles the code. However, I see no
reason why this hasn't been plaguing us in other contexts. It seems
deeply broken.
Diagnosing all of the above took all of 10 minutes of debugging. The
really annoying aspect is that fixing this completely breaks the pass.
;] There was an implicit reliance on the fact that no loads or stores
extended past the alloca once we decided to rewrite them in the final
stage of SROA. This was used to encode information about whether the
loads and stores had been split across multiple partitions of the
original alloca. That required threading explicit tracking of whether
a *use* of a partition is split across multiple partitions.
Once that was done, another problem arose: we allowed splitting of
integer loads and stores iff they were loads and stores to the entire
alloca. This is a really arbitrary limitation, and splitting at least
some integer loads and stores is crucial to maximize promotion
opportunities. My first attempt was to start removing the restriction
entirely, but currently that does Very Bad Things by causing *many*
common alloca patterns to be fully decomposed into i8 operations and
lots of or-ing together to produce larger integers on demand. The code
bloat is terrifying. That is still the right end-goal, but substantial
work must be done to either merge partitions or ensure that small i8
values are eagerly merged in some other pass. Sadly, figuring all this
out took essentially all the time and effort here.
So the end result is that we allow splitting only when the load or store
at least covers the alloca. That ensures widened loads and stores don't
hurt SROA, and that we don't rampantly decompose operations more than we
have previously.
All of this was already fairly well tested, and so I've just updated the
tests to cover the wide load behavior. I can add a test that crafts the
pass ordering magic which caused the original PR, but that seems really
brittle and to provide little benefit. The fundamental problem is that
widened loads should Just Work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177055 91177308-0d34-0410-b5e6-96231b3b80d8
constructs default arguments. It can now take default arguments from
cl::opt'ions. Add a new -default-gcov-version=... option, and actually test it!
Sink the reverse-order of the version into GCOVProfiling, hiding it from our
users.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177002 91177308-0d34-0410-b5e6-96231b3b80d8
In r176898 I updated the cost model to reflect the fact that sext/zext/cast on
v8i32 <-> v8i8 and v16i32 <-> v16i8 are expensive.
This test case is so that we make sure to update the cost model once we fix
CodeGen.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176955 91177308-0d34-0410-b5e6-96231b3b80d8
This is the next step towards making the metadata for DIScopes have a common
prefix rather than having to delegate based on their tag type.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176913 91177308-0d34-0410-b5e6-96231b3b80d8
This could be 'null' or the empty string, DIDescriptor::getStringField
coalesces the two cases anyway so it's just a matter of legible/efficient
representation.
The change in behavior of the DICompileUnit::get* functions could be
subsumed by the full verification check - but ideally that should just be an
assertion if we could front-load the actual debug info metadata failure paths.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176907 91177308-0d34-0410-b5e6-96231b3b80d8
Increase the cost of v8/v16-i8 to v8/v16-i32 casts and truncates as the backend
currently lowers those using stack accesses.
This was responsible for a significant degradation on
MultiSource/Benchmarks/Trimaran/enc-pc1/enc-pc1
where we vectorize one loop to a vector factor of 16. After this patch we select
a vector factor of 4 which will generate reasonable code.
unsigned char cle[32];
void test(short c) {
unsigned short compte;
for (compte = 0; compte <= 31; compte++) {
cle[compte] = cle[compte] ^ c;
}
}
radar://13220512
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176898 91177308-0d34-0410-b5e6-96231b3b80d8
Now that only the register-scavenger version of the CR spilling code remains,
we no longer need the Darwin R2 hack. Darwin can use R0 as a spare register in
any case where the System V ABI uses it (R0 is special architecturally, and so
is reserved under all common ABIs).
A few test cases needed to be updated to reflect the register-allocation changes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176868 91177308-0d34-0410-b5e6-96231b3b80d8
segment limit. Now, as a complement, add a stack space limit.
Otherwise, tests may grow undesirable large at inifinite
recursion. (Seen at r176838,
test/Assembler/2010-02-05-FunctionLocalMetadataBecomesNull.ll)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176862 91177308-0d34-0410-b5e6-96231b3b80d8
These cases were found by further work to remove support for debug info
versioning. Common cleanups (other than changing the version info in the tag
field) included adding the last parameter to compile_units (recently added for
fission support) and other cases of trailing fields in lexical blocks, compile
units, and subprograms.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176834 91177308-0d34-0410-b5e6-96231b3b80d8
An invoke may require a table entry. For instance, when the function it calls
is expected to throw.
<rdar://problem/13360379>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176827 91177308-0d34-0410-b5e6-96231b3b80d8