MIOperands/ConstMIOperands are classes iterating over the MachineOperand
of a MachineInstr, however MachineInstr::mop_iterator does the same
thing.
I assume these two iterators exist to have a uniform interface to
iterate over the operands of a machine instruction bundle and a single
machine instruction. However in practice I find it more confusing to have 2
different iterator classes, so this patch transforms (nearly all) the
code to use mop_iterators.
The only exception being MIOperands::anlayzePhysReg() and
MIOperands::analyzeVirtReg() still needing an equivalent, I leave that
as an exercise for the next patch.
Differential Revision: http://reviews.llvm.org/D9932
This version is slightly modified from the proposed revision in that it
introduces MachineInstr::getOperandNo to avoid the extra counting
variable in the few loops that previously used MIOperands::getOperandNo.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@238539 91177308-0d34-0410-b5e6-96231b3b80d8
This is to be consistent with StringSet and ultimately with the standard
library's associative container insert function.
This lead to updating SmallSet::insert to return pair<iterator, bool>,
and then to update SmallPtrSet::insert to return pair<iterator, bool>,
and then to update all the existing users of those functions...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222334 91177308-0d34-0410-b5e6-96231b3b80d8
This removes static initializers from the backends which generate this data, and also makes this struct match the other Tablegen generated structs in behaviour
Reviewed by Andy Trick and Chandler C
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216919 91177308-0d34-0410-b5e6-96231b3b80d8
shorter/easier and have the DAG use that to do the same lookup. This
can be used in the future for TargetMachine based caching lookups from
the MachineFunction easily.
Update the MIPS subtarget switching machinery to update this pointer
at the same time it runs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214838 91177308-0d34-0410-b5e6-96231b3b80d8
a subtarget hook to enable. Unconditionally add to the pass pipeline
for targets that might want to use it. No functional change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209340 91177308-0d34-0410-b5e6-96231b3b80d8
define below all header includes in the lib/CodeGen/... tree. While the
current modules implementation doesn't check for this kind of ODR
violation yet, it is likely to grow support for it in the future. It
also removes one layer of macro pollution across all the included
headers.
Other sub-trees will follow.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206837 91177308-0d34-0410-b5e6-96231b3b80d8
PHIs are allowed to have multiple operand pairs per predecessor, and
this code works just fine when it happens.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176734 91177308-0d34-0410-b5e6-96231b3b80d8
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
Based on CR feedback from r162301 and Craig Topper's refactoring in r162347
here are a few other places that could use the same API (& in one instance drop
a Function.h dependency).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@162367 91177308-0d34-0410-b5e6-96231b3b80d8
It is still possible to if-convert if the tail block has extra
predecessors, but the tail phis must be rewritten instead of being
removed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161781 91177308-0d34-0410-b5e6-96231b3b80d8
Detect when there is not enough available ILP, so if-conversion can't
speculate instructions for free.
Compute the lengthening of the critical path when inserting a select
instruction that depends on the condition as well as both sides of the
if.
Reject conversions that would stretch the critical path by more than
half a mispredict penalty.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161713 91177308-0d34-0410-b5e6-96231b3b80d8
Compare the critical paths of the two traces through an if-conversion
candidate. If the difference is larger than the branch brediction
penalty, reject the if-conversion. If would never pay.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161433 91177308-0d34-0410-b5e6-96231b3b80d8
This is still a work in progress.
Out-of-order CPUs usually execute instructions from multiple basic
blocks simultaneously, so it is necessary to look at longer traces when
estimating the performance effects of code transformations.
The MachineTraceMetrics analysis will pick a typical trace through a
given basic block and provide performance metrics for the trace. Metrics
will include:
- Instruction count through the trace.
- Issue count per functional unit.
- Critical path length, and per-instruction 'slack'.
These metrics can be used to determine the performance limiting factor
when executing the trace, and how it will be affected by a code
transformation.
Initially, this will be used by the early if-conversion pass.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160796 91177308-0d34-0410-b5e6-96231b3b80d8
This ordering allows nested if-conversion without using a work list, and
it makes it possible to update the dominator tree on the fly as well.
Any erased basic blocks will always be dominated by the current
post-order position, so the domtree can be pruned without invalidating
the iterator.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160025 91177308-0d34-0410-b5e6-96231b3b80d8
This pass performs if-conversion on SSA form machine code by
speculatively executing both sides of the branch and using a cmov
instruction to select the result. This can help lower the number of
branch mispredictions on architectures like x86 that don't have
predicable instructions.
The current implementation is very aggressive, and causes regressions on
mosts tests. It needs good heuristics that have yet to be implemented.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159694 91177308-0d34-0410-b5e6-96231b3b80d8