handle cases like this:
void test(int N, double* G) {
long j;
for (j = 1; j < N - 1; j++)
G[j+1] = G[j] + G[j+1];
}
where G[1] isn't live into the loop.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@90041 91177308-0d34-0410-b5e6-96231b3b80d8
translation of add with immediate. This allows us
to optimize this function:
void test(int N, double* G) {
long j;
G[1] = 1;
for (j = 1; j < N - 1; j++)
G[j+1] = G[j] + G[j+1];
}
to only do one load every iteration of the loop.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@90013 91177308-0d34-0410-b5e6-96231b3b80d8
where it is not available. It's unclear how to get this inserted
computation into GVN's scalar availability sets, Owen, help? :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@89997 91177308-0d34-0410-b5e6-96231b3b80d8
straight-forward implementation. This does not require any extra
alias analysis queries beyond what we already do for non-local loads.
Some programs really really like load PRE. For example, SPASS triggers
this ~1000 times, ~300 times in 255.vortex, and ~1500 times on 403.gcc.
The biggest limitation to the implementation is that it does not split
critical edges. This is a huge killer on many programs and should be
addressed after the initial patch is enabled by default.
The implementation of this should incidentally speed up rejection of
non-local loads because it avoids creating the repl densemap in cases
when it won't be used for fully redundant loads.
This is currently disabled by default.
Before I turn this on, I need to fix a couple of miscompilations in
the testsuite, look at compile time performance numbers, and look at
perf impact. This is pretty close to ready though.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60408 91177308-0d34-0410-b5e6-96231b3b80d8