mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-15 20:29:48 +00:00
c196bfecd6
2 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
David Blaikie
|
198d8baafb |
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8 |
||
Alexei Starovoitov
|
4fe85c7548 |
BPF backend
Summary: V8->V9: - cleanup tests V7->V8: - addressed feedback from David: - switched to range-based 'for' loops - fixed formatting of tests V6->V7: - rebased and adjusted AsmPrinter args - CamelCased .td, fixed formatting, cleaned up names, removed unused patterns - diffstat: 3 files changed, 203 insertions(+), 227 deletions(-) V5->V6: - addressed feedback from Chandler: - reinstated full verbose standard banner in all files - fixed variables that were not in CamelCase - fixed names of #ifdef in header files - removed redundant braces in if/else chains with single statements - fixed comments - removed trailing empty line - dropped debug annotations from tests - diffstat of these changes: 46 files changed, 456 insertions(+), 469 deletions(-) V4->V5: - fix setLoadExtAction() interface - clang-formated all where it made sense V3->V4: - added CODE_OWNERS entry for BPF backend V2->V3: - fix metadata in tests V1->V2: - addressed feedback from Tom and Matt - removed top level change to configure (now everything via 'experimental-backend') - reworked error reporting via DiagnosticInfo (similar to R600) - added few more tests - added cmake build - added Triple::bpf - tested on linux and darwin V1 cover letter: --------------------- recently linux gained "universal in-kernel virtual machine" which is called eBPF or extended BPF. The name comes from "Berkeley Packet Filter", since new instruction set is based on it. This patch adds a new backend that emits extended BPF instruction set. The concept and development are covered by the following articles: http://lwn.net/Articles/599755/ http://lwn.net/Articles/575531/ http://lwn.net/Articles/603983/ http://lwn.net/Articles/606089/ http://lwn.net/Articles/612878/ One of use cases: dtrace/systemtap alternative. bpf syscall manpage: https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=b4fc1a460f3017e958e6a8ea560ea0afd91bf6fe instruction set description and differences vs classic BPF: http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/filter.txt Short summary of instruction set: - 64-bit registers R0 - return value from in-kernel function, and exit value for BPF program R1 - R5 - arguments from BPF program to in-kernel function R6 - R9 - callee saved registers that in-kernel function will preserve R10 - read-only frame pointer to access stack - two-operand instructions like +, -, *, mov, load/store - implicit prologue/epilogue (invisible stack pointer) - no floating point, no simd Short history of extended BPF in kernel: interpreter in 3.15, x64 JIT in 3.16, arm64 JIT, verifier, bpf syscall in 3.18, more to come in the future. It's a very small and simple backend. There is no support for global variables, arbitrary function calls, floating point, varargs, exceptions, indirect jumps, arbitrary pointer arithmetic, alloca, etc. From C front-end point of view it's very restricted. It's done on purpose, since kernel rejects all programs that it cannot prove safe. It rejects programs with loops and with memory accesses via arbitrary pointers. When kernel accepts the program it is guaranteed that program will terminate and will not crash the kernel. This patch implements all 'must have' bits. There are several things on TODO list, so this is not the end of development. Most of the code is a boiler plate code, copy-pasted from other backends. Only odd things are lack or < and <= instructions, specialized load_byte intrinsics and 'compare and goto' as single instruction. Current instruction set is fixed, but more instructions can be added in the future. Signed-off-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> Subscribers: majnemer, chandlerc, echristo, joerg, pete, rengolin, kristof.beyls, arsenm, t.p.northover, tstellarAMD, aemerson, llvm-commits Differential Revision: http://reviews.llvm.org/D6494 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227008 91177308-0d34-0410-b5e6-96231b3b80d8 |