Now that `Metadata` is typeless, reflect that in the assembly. These
are the matching assembly changes for the metadata/value split in
r223802.
- Only use the `metadata` type when referencing metadata from a call
intrinsic -- i.e., only when it's used as a `Value`.
- Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
when referencing it from call intrinsics.
So, assembly like this:
define @foo(i32 %v) {
call void @llvm.foo(metadata !{i32 %v}, metadata !0)
call void @llvm.foo(metadata !{i32 7}, metadata !0)
call void @llvm.foo(metadata !1, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{metadata !3}, metadata !0)
ret void, !bar !2
}
!0 = metadata !{metadata !2}
!1 = metadata !{i32* @global}
!2 = metadata !{metadata !3}
!3 = metadata !{}
turns into this:
define @foo(i32 %v) {
call void @llvm.foo(metadata i32 %v, metadata !0)
call void @llvm.foo(metadata i32 7, metadata !0)
call void @llvm.foo(metadata i32* @global, metadata !0)
call void @llvm.foo(metadata !3, metadata !0)
call void @llvm.foo(metadata !{!3}, metadata !0)
ret void, !bar !2
}
!0 = !{!2}
!1 = !{i32* @global}
!2 = !{!3}
!3 = !{}
I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines). I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.
This is part of PR21532.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224257 91177308-0d34-0410-b5e6-96231b3b80d8
Such loops shouldn't be vectorized due to the loops form.
After applying loop-rotate (+simplifycfg) the tests again start to check
what they are intended to check.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223170 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r222632 (and follow-up r222636), which caused a host
of LNT failures on an internal bot. I'll respond to the commit on the
list with a reproduction of one of the failures.
Conflicts:
lib/Target/X86/X86TargetTransformInfo.cpp
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222936 91177308-0d34-0410-b5e6-96231b3b80d8
Introduced new target-independent intrinsics in order to support masked vector loads and stores. The loop vectorizer optimizes loops containing conditional memory accesses by generating these intrinsics for existing targets AVX2 and AVX-512. The vectorizer asks the target about availability of masked vector loads and stores.
Added SDNodes for masked operations and lowering patterns for X86 code generator.
Examples:
<16 x i32> @llvm.masked.load.v16i32(i8* %addr, <16 x i32> %passthru, i32 4 /* align */, <16 x i1> %mask)
declare void @llvm.masked.store.v8f64(i8* %addr, <8 x double> %value, i32 4, <8 x i1> %mask)
Scalarizer for other targets (not AVX2/AVX-512) will be done in a separate patch.
http://reviews.llvm.org/D6191
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222632 91177308-0d34-0410-b5e6-96231b3b80d8
A pointer's pointee might not be sized: the pointee could be a function.
Report this as IK_NoInduction when calculating isInductionVariable.
This fixes PR21508.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221501 91177308-0d34-0410-b5e6-96231b3b80d8
These are named following the IEEE-754 names for these
functions, rather than the libm fmin / fmax to avoid
possible ambiguities. Some languages may implement something
resembling fmin / fmax which return NaN if either operand is
to propagate errors. These implement the IEEE-754 semantics
of returning the other operand if either is a NaN representing
missing data.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220341 91177308-0d34-0410-b5e6-96231b3b80d8
A few minor changes to prevent @llvm.assume from interfering with loop
vectorization. First, treat @llvm.assume like the lifetime intrinsics, which
are scalarized (but don't otherwise interfere with the legality checking).
Second, ignore the cost of ephemeral instructions in the loop (these will go
away anyway during CodeGen).
Alignment assumptions and other uses of @llvm.assume can often end up inside of
loops that should be vectorized (this is not uncommon for assumptions generated
by __attribute__((align_value(n))), for example).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219741 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r218918, effectively reapplying r218914 after fixing
an Ocaml bindings test and an Asan crash. The root cause of the latter
was a tightened-up check in `DILexicalBlock::Verify()`, so I'll file a
PR to investigate who requires the loose check (and why).
Original commit message follows.
--
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219010 91177308-0d34-0410-b5e6-96231b3b80d8
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218914 91177308-0d34-0410-b5e6-96231b3b80d8
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
Note: I accidentally committed a bogus older version of this patch previously.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218787 91177308-0d34-0410-b5e6-96231b3b80d8
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218778 91177308-0d34-0410-b5e6-96231b3b80d8
The loop vectorizer preserves wrapping, exact, and fast-math properties of scalar instructions.
This patch adds a convenience method to make that operation easier because we need to do this
in the loop vectorizer, SLP vectorizer, and possibly other places.
Although this is a 'no functional change' patch, I've added a testcase to verify that the exact
flag is preserved by the loop vectorizer. The wrapping and fast-math flags are already checked
in existing testcases.
Differential Revision: http://reviews.llvm.org/D5138
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216886 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, the hint mechanism relied on clean up passes to remove redundant
metadata, which still showed up if running opt at low levels of optimization.
That also has shown that multiple nodes of the same type, but with different
values could still coexist, even if temporary, and cause confusion if the
next pass got the wrong value.
This patch makes sure that, if metadata already exists in a loop, the hint
mechanism will never append a new node, but always replace the existing one.
It also enhances the algorithm to cope with more metadata types in the future
by just adding a new type, not a lot of code.
Re-applying again due to MSVC 2013 being minimum requirement, and this patch
having C++11 that MSVC 2012 didn't support.
Fixes PR20655.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216870 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds support to recognize division by uniform power of 2 and modifies the cost table to vectorize division by uniform power of 2 whenever possible.
Updates Cost model for Loop and SLP Vectorizer.The cost table is currently only updated for X86 backend.
Thanks to Hal, Andrea, Sanjay for the review. (http://reviews.llvm.org/D4971)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216371 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, the hint mechanism relied on clean up passes to remove redundant
metadata, which still showed up if running opt at low levels of optimization.
That also has shown that multiple nodes of the same type, but with different
values could still coexist, even if temporary, and cause confusion if the
next pass got the wrong value.
This patch makes sure that, if metadata already exists in a loop, the hint
mechanism will never append a new node, but always replace the existing one.
It also enhances the algorithm to cope with more metadata types in the future
by just adding a new type, not a lot of code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215994 91177308-0d34-0410-b5e6-96231b3b80d8
When the cost model determines vectorization is not possible/profitable these remarks print an analysis of that decision.
Note that in selectVectorizationFactor() we can assume that OptForSize and ForceVectorization are mutually exclusive.
Reviewed by Arnold Schwaighofer
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214599 91177308-0d34-0410-b5e6-96231b3b80d8
The current remark is ambiguous and makes it sounds like explicitly specifying vectorization will allow the loop to be vectorized. This is not the case. The improved remark directs the user to -Rpass-analysis=loop-vectorize to determine the cause of the pass-miss.
Reviewed by Arnold Schwaighofer`
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214445 91177308-0d34-0410-b5e6-96231b3b80d8
Prior to this change, the loop vectorizer did not make use of the alias
analysis infrastructure. Instead, it performed memory dependence analysis using
ScalarEvolution-based linear dependence checks within equivalence classes
derived from the results of ValueTracking's GetUnderlyingObjects.
Unfortunately, this meant that:
1. The loop vectorizer had logic that essentially duplicated that in BasicAA
for aliasing based on identified objects.
2. The loop vectorizer could not partition the space of dependency checks
based on information only easily available from within AA (TBAA metadata is
currently the prime example).
This means, for example, regardless of whether -fno-strict-aliasing was
provided, the vectorizer would only vectorize this loop with a runtime
memory-overlap check:
void foo(int *a, float *b) {
for (int i = 0; i < 1600; ++i)
a[i] = b[i];
}
This is suboptimal because the TBAA metadata already provides the information
necessary to show that this check unnecessary. Of course, the vectorizer has a
limit on the number of such checks it will insert, so in practice, ignoring
TBAA means not vectorizing more-complicated loops that we should.
This change causes the vectorizer to use an AliasSetTracker to keep track of
the pointers in the loop. The resulting alias sets are then used to partition
the space of dependency checks, and potential runtime checks; this results in
more-efficient vectorizations.
When pointer locations are added to the AliasSetTracker, two things are done:
1. The location size is set to UnknownSize (otherwise you'd not catch
inter-iteration dependencies)
2. For instructions in blocks that would need to be predicated, TBAA is
removed (because the metadata might have a control dependency on the condition
being speculated).
For non-predicated blocks, you can leave the TBAA metadata. This is safe
because you can't have an iteration dependency on the TBAA metadata (if you
did, and you unrolled sufficiently, you'd end up with the same pointer value
used by two accesses that TBAA says should not alias, and that would yield
undefined behavior).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213486 91177308-0d34-0410-b5e6-96231b3b80d8
There are some kinds of metadata that are safe to propagate from the scalar
instructions to the vector instructions (fpmath and tbaa currently).
Regarding TBAA, one might worry about propagating it on if-converted loads and
stores, because the metadata might have had a control dependency on the
condition, and thus actually aliased with some other non-speculated memory
access when the condition was false. However, this would be caught by the
runtime overlap checks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213452 91177308-0d34-0410-b5e6-96231b3b80d8
This patch modifies the existing DiagnosticInfo system to create a generic base
class that is inherited to produce diagnostic-based warnings. This is used by
the loop vectorizer to trigger a warning when vectorization is forced and
fails. Several tests have been added to verify this behavior.
Reviewed by: Arnold Schwaighofer
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213110 91177308-0d34-0410-b5e6-96231b3b80d8
This lets us experiment with 512-bit vectorization without passing
force-vector-width manually.
The code generated for a simple integer memset loop is properly vectorized.
Disassembly is still broken for it though :(.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212634 91177308-0d34-0410-b5e6-96231b3b80d8
[LLVM part]
These patches rename the loop unrolling and loop vectorizer metadata
such that they have a common 'llvm.loop.' prefix. Metadata name
changes:
llvm.vectorizer.* => llvm.loop.vectorizer.*
llvm.loopunroll.* => llvm.loop.unroll.*
This was a suggestion from an earlier review
(http://reviews.llvm.org/D4090) which added the loop unrolling
metadata.
Patch by Mark Heffernan.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211710 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This new debug emission kind supports emitting line location
information in all instructions, but stops code generation
from emitting debug info to the final output.
This mode is useful when the backend wants to track source
locations during code generation, but it does not want to
produce debug info. This is currently used by optimization
remarks (-pass-remarks, -pass-remarks-missed and
-pass-remarks-analysis).
To prevent debug info emission, DIBuilder never inserts the
annotation 'llvm.dbg.cu' when LocTrackingOnly is enabled.
Reviewers: echristo, dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4234
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211609 91177308-0d34-0410-b5e6-96231b3b80d8
The induction variables start value needs to be defined before we branch
(overflow check) to the scalar preheader where we used it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@211460 91177308-0d34-0410-b5e6-96231b3b80d8
The loop vectorizer instantiates be-taken-count + 1 as the loop iteration count.
If this expression overflows the generated code was invalid.
In case of overflow the code now jumps to the scalar loop.
Fixes PR17288.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209854 91177308-0d34-0410-b5e6-96231b3b80d8
This commit starts with a "git mv ARM64 AArch64" and continues out
from there, renaming the C++ classes, intrinsics, and other
target-local objects for consistency.
"ARM64" test directories are also moved, and tests that began their
life in ARM64 use an arm64 triple, those from AArch64 use an aarch64
triple. Both should be equivalent though.
This finishes the AArch64 merge, and everyone should feel free to
continue committing as normal now.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209577 91177308-0d34-0410-b5e6-96231b3b80d8
I'm doing this in two phases for a better "git blame" record. This
commit removes the previous AArch64 backend and redirects all
functionality to ARM64. It also deduplicates test-lines and removes
orphaned AArch64 tests.
The next step will be "git mv ARM64 AArch64" and rewire most of the
tests.
Hopefully LLVM is still functional, though it would be even better if
no-one ever had to care because the rename happens straight
afterwards.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209576 91177308-0d34-0410-b5e6-96231b3b80d8
This patch enables transformations:
BinOp(shuffle(v1), shuffle(v2)) -> shuffle(BinOp(v1, v2))
BinOp(shuffle(v1), const1) -> shuffle(BinOp, const2)
They allow to eliminate extra shuffles in some cases.
Differential Revision: http://reviews.llvm.org/D3525
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208488 91177308-0d34-0410-b5e6-96231b3b80d8
The old method used by X86TTI to determine partial-unrolling thresholds was
messy (because it worked by testing target features), and also would not
correctly identify the target CPU if certain target features were disabled.
After some discussions on IRC with Chandler et al., it was decided that the
processor scheduling models were the right containers for this information
(because it is often tied to special uop dispatch-buffer sizes).
This does represent a small functionality change:
- For generic x86-64 (which uses the SB model and, thus, will get some
unrolling).
- For AMD cores (because they still currently use the SB scheduling model)
- For Haswell (based on benchmarking by Louis Gerbarg, it was decided to bump
the default threshold to 50; we're working on a test case for this).
Otherwise, nothing has changed for any other targets. The logic, however, has
been moved into BasicTTI, so other targets may now also opt-in to this
functionality simply by setting LoopMicroOpBufferSize in their processor
model definitions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208289 91177308-0d34-0410-b5e6-96231b3b80d8
This patch changes the vectorization remarks to also inform when
vectorization is possible but not beneficial.
Added tests to exercise some loop remarks.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207574 91177308-0d34-0410-b5e6-96231b3b80d8