This adds two command line options:
--symbols dumps a list of all symbols found in the PDB.
--symbol-details dumps the same list, but with detailed information
for every symbol such as type, attributes, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227286 91177308-0d34-0410-b5e6-96231b3b80d8
This adds two command line options to llvm-pdbdump.
--source-files prints a flat list of all source files in the PDB.
--compilands prints a list of all compilands (e.g. object files)
that the PDB knows about, and for each one, a list of
source files that the compiland is composed of as well
as a hash of the original source file.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227276 91177308-0d34-0410-b5e6-96231b3b80d8
PDB stores some of its data in streams and some in tables.
This patch teaches llvm-pdbdump to dump basic summary data
for the debug tables.
In support of this, this patch also adds some DIA helper
classes, such as a wrapper around an IDiaSymbol interface,
as well as helpers for outputting various enumerations to
a raw_ostream.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227257 91177308-0d34-0410-b5e6-96231b3b80d8
llvm-pdbdump is a tool which can be used to dump the contents
of Microsoft-generated PDB files. It makes use of the Microsoft
DIA SDK, which is a COM based library designed specifically for
this purpose.
The initial commit of this tool dumps the raw bytes from PDB data
streams. Future commits will dump more semantic information such
as types, symbols, source files, etc similar to the types of
information accessible via llvm-dwarfdump.
Reviewed by: Aaron Ballman, Reid Kleckner, Chandler Carruth
Differential Revision: http://reviews.llvm.org/D7153
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227241 91177308-0d34-0410-b5e6-96231b3b80d8
derived classes.
Since global data alignment, layout, and mangling is often based on the
DataLayout, move it to the TargetMachine. This ensures that global
data is going to be layed out and mangled consistently if the subtarget
changes on a per function basis. Prior to this all targets(*) have
had subtarget dependent code moved out and onto the TargetMachine.
*One target hasn't been migrated as part of this change: R600. The
R600 port has, as a subtarget feature, the size of pointers and
this affects global data layout. I've currently hacked in a FIXME
to enable progress, but the port needs to be updated to either pass
the 64-bitness to the TargetMachine, or fix the DataLayout to
avoid subtarget dependent features.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227113 91177308-0d34-0410-b5e6-96231b3b80d8
MIPS64 ELF file has a very specific relocation record format. Each
record might specify up to three relocation operations. So the `r_info`
field in fact consists of three relocation type sub-fields and optional
code of "special" symbols.
http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf
page 40
The patch implements support of the MIPS64 relocation record format in
yaml2obj/obj2yaml tools by introducing new optional Relocation fields:
Type2, Type3, and SpecSym. These fields are recognized only if the
object/YAML file relates to the MIPS64 target.
Differential Revision: http://reviews.llvm.org/D7136
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227044 91177308-0d34-0410-b5e6-96231b3b80d8
This just lifts the logic into a static helper function, sinks the
legacy pass to be a trivial wrapper of that helper fuction, and adds
a trivial wrapper for the new PM as well. Not much to see here.
I switched a test case to run in both modes, but we have to strip the
dead prototypes separately as that pass isn't in the new pass manager
(yet).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226999 91177308-0d34-0410-b5e6-96231b3b80d8
This is exciting as this is a much more involved port. This is
a complex, existing transformation pass. All of the core logic is shared
between both old and new pass managers. Only the access to the analyses
is separate because the actual techniques are separate. This also uses
a bunch of different and interesting analyses and is the first time
where we need to use an analysis across an IR layer.
This also paves the way to expose instcombine utility functions. I've
got a static function that implements the core pass logic over
a function which might be mildly interesting, but more interesting is
likely exposing a routine which just uses instructions *already in* the
worklist and combines until empty.
I've switched one of my favorite instcombine tests to run with both as
well to make sure this keeps working.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226987 91177308-0d34-0410-b5e6-96231b3b80d8
manager to support the actual uses of it. =]
When I ported instcombine to the new pass manager I discover that it
didn't work because TLI wasn't available in the right places. This is
a somewhat surprising and/or subtle aspect of the new pass manager
design that came up before but I think is useful to be reminded of:
While the new pass manager *allows* a function pass to query a module
analysis, it requires that the module analysis is already run and cached
prior to the function pass manager starting up, possibly with
a 'require<foo>' style utility in the pass pipeline. This is an
intentional hurdle because using a module analysis from a function pass
*requires* that the module analysis is run prior to entering the
function pass manager. Otherwise the other functions in the module could
be in who-knows-what state, etc.
A somewhat surprising consequence of this design decision (at least to
me) is that you have to design a function pass that leverages
a module analysis to do so as an optional feature. Even if that means
your function pass does no work in the absence of the module analysis,
you have to handle that possibility and remain conservatively correct.
This is a natural consequence of things being able to invalidate the
module analysis and us being unable to re-run it. And it's a generally
good thing because it lets us reorder passes arbitrarily without
breaking correctness, etc.
This ends up causing problems in one case. What if we have a module
analysis that is *definitionally* impossible to invalidate. In the
places this might come up, the analysis is usually also definitionally
trivial to run even while other transformation passes run on the module,
regardless of the state of anything. And so, it follows that it is
natural to have a hard requirement on such analyses from a function
pass.
It turns out, that TargetLibraryInfo is just such an analysis, and
InstCombine has a hard requirement on it.
The approach I've taken here is to produce an analysis that models this
flexibility by making it both a module and a function analysis. This
exposes the fact that it is in fact safe to compute at any point. We can
even make it a valid CGSCC analysis at some point if that is useful.
However, we don't want to have a copy of the actual target library info
state for each function! This state is specific to the triple. The
somewhat direct and blunt approach here is to turn TLI into a pimpl,
with the state and mutators in the implementation class and the query
routines primarily in the wrapper. Then the analysis can lazily
construct and cache the implementations, keyed on the triple, and
on-demand produce wrappers of them for each function.
One minor annoyance is that we will end up with a wrapper for each
function in the module. While this is a bit wasteful (one pointer per
function) it seems tolerable. And it has the advantage of ensuring that
we pay the absolute minimum synchronization cost to access this
information should we end up with a nice parallel function pass manager
in the future. We could look into trying to mark when analysis results
are especially cheap to recompute and more eagerly GC-ing the cached
results, or we could look at supporting a variant of analyses whose
results are specifically *not* cached and expected to just be used and
discarded by the consumer. Either way, these seem like incremental
enhancements that should happen when we start profiling the memory and
CPU usage of the new pass manager and not before.
The other minor annoyance is that if we end up using the TLI in both
a module pass and a function pass, those will be produced by two
separate analyses, and thus will point to separate copies of the
implementation state. While a minor issue, I dislike this and would like
to find a way to cleanly allow a single analysis instance to be used
across multiple IR unit managers. But I don't have a good solution to
this today, and I don't want to hold up all of the work waiting to come
up with one. This too seems like a reasonable thing to incrementally
improve later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226981 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds a new set of JIT APIs to LLVM. The aim of these new APIs is to
cleanly support a wider range of JIT use cases in LLVM, and encourage the
development and contribution of re-usable infrastructure for LLVM JIT use-cases.
These APIs are intended to live alongside the MCJIT APIs, and should not affect
existing clients.
Included in this patch:
1) New headers in include/llvm/ExecutionEngine/Orc that provide a set of
components for building JIT infrastructure.
Implementation code for these headers lives in lib/ExecutionEngine/Orc.
2) A prototype re-implementation of MCJIT (OrcMCJITReplacement) built out of the
new components.
3) Minor changes to RTDyldMemoryManager needed to support the new components.
These changes should not impact existing clients.
4) A new flag for lli, -use-orcmcjit, which will cause lli to use the
OrcMCJITReplacement class as its underlying execution engine, rather than
MCJIT itself.
Tests to follow shortly.
Special thanks to Michael Ilseman, Pete Cooper, David Blaikie, Eric Christopher,
Justin Bogner, and Jim Grosbach for extensive feedback and discussion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226940 91177308-0d34-0410-b5e6-96231b3b80d8
I had already factored this analysis specifically to enable doing this,
but hadn't actually committed the necessary wiring to get at this from
the new pass manager. This also nicely shows how the separate cache
object can be directly managed by the new pass manager.
This analysis didn't have any direct tests and so I've added a printer
pass and a boring test case. I chose to print the i1 value which is
being assumed rather than the call to llvm.assume as that seems much
more useful for testing... but suggestions on an even better printing
strategy welcome. My main goal was to make sure things actually work. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226868 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
The default copy and assignment operators for these objects probably don't actually do what the clients intend, so they should be deleted.
Places using the assignment operator to set the value of an option should cast to the option's data type first to call into the override for operator=. Places using the copy constructor just need to be changed to not copy (i.e. passing by const reference instead of value).
Reviewers: dexonsmith, chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7114
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226762 91177308-0d34-0410-b5e6-96231b3b80d8
pass and a LoopPrinterPass with the expected associated wiring.
I've added a RUN line to the only test case (!!!) we have that actually
prints loops. Everything seems to be working.
This is somewhat exciting as this is the first analysis using another
analysis to go in for the new pass manager. =D I also believe it is the
last analysis necessary for porting instcombine, but of course I may yet
discover more.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226560 91177308-0d34-0410-b5e6-96231b3b80d8
It will be needed to instantiate the Target object that we will
use to create all the MC objects for the dwarf emission.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226525 91177308-0d34-0410-b5e6-96231b3b80d8
Add an additional based relocation to the enumeration of based relocation names.
The lack of the enumerator value causes issues when inspecting WoA binaries.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226314 91177308-0d34-0410-b5e6-96231b3b80d8
TargetLibraryAnalysis pass.
There are actually no direct tests of this already in the tree. I've
added the most basic test that the pass manager bits themselves work,
and the TLI object produced will be tested by an upcoming patches as
they port passes which rely on TLI.
This is starting to point out the awkwardness of the invalidate API --
it seems poorly fitting on the *result* object. I suspect I will change
it to live on the analysis instead, but that's not for this change, and
I'd rather have a few more passes ported in order to have more
experience with how this plays out.
I believe there is only one more analysis required in order to start
porting instcombine. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226160 91177308-0d34-0410-b5e6-96231b3b80d8
The pass is really just a means of accessing a cached instance of the
TargetLibraryInfo object, and this way we can re-use that object for the
new pass manager as its result.
Lots of delta, but nothing interesting happening here. This is the
common pattern that is developing to allow analyses to live in both the
old and new pass manager -- a wrapper pass in the old pass manager
emulates the separation intrinsic to the new pass manager between the
result and pass for analyses.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226157 91177308-0d34-0410-b5e6-96231b3b80d8
While the term "Target" is in the name, it doesn't really have to do
with the LLVM Target library -- this isn't an abstraction which LLVM
targets generally need to implement or extend. It has much more to do
with modeling the various runtime libraries on different OSes and with
different runtime environments. The "target" in this sense is the more
general sense of a target of cross compilation.
This is in preparation for porting this analysis to the new pass
manager.
No functionality changed, and updates inbound for Clang and Polly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226078 91177308-0d34-0410-b5e6-96231b3b80d8
This can happen if:
* It is present in a comdat in one file.
* It is not present in the comdat of the file that is kept.
* Is is not used.
This should fix the LTO boostrap.
Thanks to Takumi NAKAMURA for setting up the bot!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225983 91177308-0d34-0410-b5e6-96231b3b80d8
utils/sort_includes.py.
I clearly haven't done this in a while, so more changed than usual. This
even uncovered a missing include from the InstrProf library that I've
added. No functionality changed here, just mechanical cleanup of the
include order.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225974 91177308-0d34-0410-b5e6-96231b3b80d8
This adds the domtree analysis to the new pass manager. The analysis
returns the same DominatorTree result entity used by the old pass
manager and essentially all of the code is shared. We just have
different boilerplate for running and printing the analysis.
I've converted one test to run in both modes just to make sure this is
exercised while both are live in the tree.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225969 91177308-0d34-0410-b5e6-96231b3b80d8
and expose the necessary hooks in the API directly.
This makes it much cleaner for example to log the usage of a pass
manager from a library. It also makes it more obvious that this
functionality isn't "optional" or "asserts-only" for the pass manager.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225841 91177308-0d34-0410-b5e6-96231b3b80d8
template.
This consolidates three copies of nearly the same core logic. It adds
"complexity" to the ModuleAnalysisManager in that it makes it possible
to share a ModuleAnalysisManager across multiple modules... But it does
so by deleting *all of the code*, so I'm OK with that. This will
naturally make fixing bugs in this code much simpler, etc.
The only down side here is that we have to use 'typename' and 'this->'
in various places, and the implementation is lifted into the header.
I'll take that for the code size reduction.
The convenient names are still typedef-ed and used throughout so that
users can largely ignore this aspect of the implementation.
The follow-up change to this will do the exact same refactoring for the
PassManagers. =D
It turns out that the interesting different code is almost entirely in
the adaptors. At the end, that should be essentially all that is left.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225757 91177308-0d34-0410-b5e6-96231b3b80d8
The bitcode reading interface used std::error_code to report an error to the
callers and it is the callers job to print diagnostics.
This is not ideal for error handling or diagnostic reporting:
* For error handling, all that the callers care about is 3 possibilities:
* It worked
* The bitcode file is corrupted/invalid.
* The file is not bitcode at all.
* For diagnostic, it is user friendly to include far more information
about the invalid case so the user can find out what is wrong with the
bitcode file. This comes up, for example, when a developer introduces a
bug while extending the format.
The compromise we had was to have a lot of error codes.
With this patch we use the DiagnosticHandler to communicate with the
human and std::error_code to communicate with the caller.
This allows us to have far fewer error codes and adds the infrastructure to
print better diagnostics. This is so because the diagnostics are printed when
he issue is found. The code that detected the problem in alive in the stack and
can pass down as much context as needed. As an example the patch updates
test/Bitcode/invalid.ll.
Using a DiagnosticHandler also moves the fatal/non-fatal error decision to the
caller. A simple one like llvm-dis can just use fatal errors. The gold plugin
needs a bit more complex treatment because of being passed non-bitcode files. An
hypothetical interactive tool would make all bitcode errors non-fatal.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225562 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r225498 (but leaves r225499, which was a worthy
cleanup).
My plan was to change `DEBUG_LOC` to store the `MDNode` directly rather
than its operands (patch was to go out this morning), but on reflection
it's not clear that it's strictly better. (I had missed that the
current code is unlikely to emit the `MDNode` at all.)
Conflicts:
lib/Bitcode/Reader/BitcodeReader.cpp (due to r225499)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225531 91177308-0d34-0410-b5e6-96231b3b80d8
options other than just -disassemble so that universal files can be used with other
options combined with -arch options.
No functional change to existing options and use. One test case added for the
additional functionality with a universal file an a -arch option.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225383 91177308-0d34-0410-b5e6-96231b3b80d8
requiring and invalidating specific analyses. Also make their printed
names match their class names. Writing these out as prose really doesn't
make sense to me any more.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225346 91177308-0d34-0410-b5e6-96231b3b80d8
Use this to test that path of invalidation. This test actually shows
redundant invalidation here that is really bad. I'm going to work on
fixing that next, but wanted to commit the test harness now that its all
working.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225257 91177308-0d34-0410-b5e6-96231b3b80d8
remove an extra, redundant pass manager wrapping every run.
I had kept seeing these when manually testing, but it was getting really
annoying and was going to cause problems with overly eager invalidation.
The root cause was an overly complex and unnecessary pile of code for
parsing the outer layer of the pass pipeline. We can instead delegate
most of this to the recursive pipeline parsing.
I've added some somewhat more basic and precise tests to catch this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225253 91177308-0d34-0410-b5e6-96231b3b80d8
a specific analysis result.
This is quite handy to test things, and will also likely be very useful
for debugging issues. You could narrow down pass validation failures by
walking these invalidate pass runs up and down the pass pipeline, etc.
I've added support to the pass pipeline parsing to be able to create one
of these for any analysis pass desired.
Just adding this class uncovered one latent bug where the
AnalysisManager CRTP base class had a hard-coded Module type rather than
using IRUnitT.
I've also added tests for invalidation and caching of analyses in
a basic way across all the pass managers. These in turn uncovered two
more bugs where we failed to correctly invalidate an analysis -- its
results were invalidated but the key for re-running the pass was never
cleared and so it was never re-run. Quite nasty. I'm very glad to debug
this here rather than with a full system.
Also, yes, the naming here is horrid. I'm going to update some of the
names to be slightly less awful shortly. But really, I've no "good"
ideas for naming. I'll be satisfied if I can get it to "not bad".
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225246 91177308-0d34-0410-b5e6-96231b3b80d8
more verbose than I'd like, but the code really isn't that interesting,
and this still seems vastly simpler than any other solutions I've come
up with. =] Maybe if we get to the 10th IR unit, this will be a problem
in practice.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225245 91177308-0d34-0410-b5e6-96231b3b80d8
manager tests to use them and be significantly more comprehensive.
This, naturally, uncovered a bug where the CGSCC pass manager wasn't
printing analyses when they were run.
The only remaining core manipulator is I think an invalidate pass
similar to the require pass. That'll be next. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225240 91177308-0d34-0410-b5e6-96231b3b80d8
simplify things. This will become more important as I add no-op analyses
that want to re-use the logic we already have for analyses in the
registry. For now, no functionality changed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225238 91177308-0d34-0410-b5e6-96231b3b80d8
a normal interface for it in Passes.h.
This gives us essentially a single interface for running pass managers
which are provided from the bottom of the LLVM stack through interfaces
at the top of the LLVM stack that populate them with all of the
different analyses available throughout. It also means there is a single
blob of code that needs to include all of the pass headers and needs to
deal with the registry of passes and parsing names.
No functionality changed intended, should just be cleanup.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225237 91177308-0d34-0410-b5e6-96231b3b80d8
is a no-op other than requiring some analysis results be available.
This can be used in real pass pipelines to force the usually lazy
analysis running to eagerly compute something at a specific point, and
it can be used to test the pass manager infrastructure (my primary use
at the moment).
I've also added bit of pipeline parsing magic to support generating
these directly from the opt command so that you can directly use these
when debugging your analysis. The syntax is:
require<analysis-name>
This can be used at any level of the pass manager. For example:
cgscc(function(require<my-analysis>,no-op-function))
This would produce a no-op function pass requiring my-analysis, followed
by a fully no-op function pass, both of these in a function pass manager
which is nested inside of a bottom-up CGSCC pass manager which is in the
top-level (implicit) module pass manager.
I have zero attachment to the particular syntax I'm using here. Consider
it a straw man for use while I'm testing and fleshing things out.
Suggestions for better syntax welcome, and I'll update everything based
on any consensus that develops.
I've used this new functionality to more directly test the analysis
printing rather than relying on the cgscc pass manager running an
analysis for me. This is still minimally tested because I need to have
analyses to run first! ;] That patch is next, but wanted to keep this
one separate for easier review and discussion.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225236 91177308-0d34-0410-b5e6-96231b3b80d8
This object is meant to own the ObjectFiles and their underlying
MemoryBuffer. It is basically the equivalent of an OwningBinary
except that it efficiently handles Archives. It is optimized for
efficiently providing mappings of members of the same archive when
they are opened successively (which is standard in Darwin debug
maps, objects from the same archive will be contiguous).
Of course, the BinaryHolder will also be used by the DWARF linker
once it is commited, but for now only the debug map parser uses it.
With this change, you can run llvm-dsymutil on your Darwin debug build
of clang and get a complete debug map for it.
Differential Revision: http://reviews.llvm.org/D6690
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225207 91177308-0d34-0410-b5e6-96231b3b80d8
units.
This was debated back and forth a bunch, but using references is now
clearly cleaner. Of all the code written using pointers thus far, in
only one place did it really make more sense to have a pointer. In most
cases, this just removes immediate dereferencing from the code. I think
it is much better to get errors on null IR units earlier, potentially
at compile time, than to delay it.
Most notably, the legacy pass manager uses references for its routines
and so as more and more code works with both, the use of pointers was
likely to become really annoying. I noticed this when I ported the
domtree analysis over and wrote the entire thing with references only to
have it fail to compile. =/ It seemed better to switch now than to
delay. We can, of course, revisit this is we learn that references are
really problematic in the API.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225145 91177308-0d34-0410-b5e6-96231b3b80d8
The required functionality has been there for some time, but I never
managed to actually wire it into the command line registry of passes.
Let's do that.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225144 91177308-0d34-0410-b5e6-96231b3b80d8
This enhances llvm-readobj to print out the COFF export table, similar to the
-coff-import option. This is useful for testing in lld.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225120 91177308-0d34-0410-b5e6-96231b3b80d8
For this to work, we have to encode it in the build variables and use it
from llvm-config.cpp. I've tried to do this reasonably cleanly, but the
code for llvm-config.cpp is pretty strange. However, with this,
llvm-config stops giving the wrong answer when using LLVM_LIBDIR_SUFFIX.
Note that the configure+make build just sets this to an empty string as
that build system has zero support for multilib of any form. I'm not
planning to add support there either, but this should leave a path for
anyone that wanted to.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224921 91177308-0d34-0410-b5e6-96231b3b80d8
*numerous* places where it was missing in the CMake build. The primary
change here is that the suffix is now actually used for all of the lib
directories in the LLVM project's CMake. The various subprojects still
need similar treatment.
This is the first of a series of commits to try to make LLVM's cmake
effective in a multilib Linux installation. I don't think many people
are seriously using this variable so I'm hoping the fallout will be
minimal. A somewhat unfortunate consequence of the nature of these
commits is that until I land all of them, they will in part make the
brokenness of our multilib support more apparant. At the end, things
should actually work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224919 91177308-0d34-0410-b5e6-96231b3b80d8
Export symbols in libLTO.dylib for the local context-related functions
added in r221733 (`LTO_API_VERSION=11`)... and add the missing
definition for `lto_codegen_create_in_local_context()`.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224567 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: We should only have llvm-c-test use libLLVM if the library is built with the default set of components or if LLVM_DYLIB_COMPONENTS includes all the LLVM_LINK_COMPONENTS required for llvm-c-test. Making libLLVM always used causes build failures if libLLVM doesn't include all
Reviewers: chapuni, ributzka
Reviewed By: ributzka
Subscribers: ributzka, llvm-commits
Differential Revision: http://reviews.llvm.org/D6668
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224541 91177308-0d34-0410-b5e6-96231b3b80d8
Also corrected the name of the load command to not end in an ’S’ as well as corrected
the name of the MachO::linker_option_command struct and other places that had the
word option as plural which did not match the Mac OS X headers.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224485 91177308-0d34-0410-b5e6-96231b3b80d8
Add coverage in `llvm-lto` for the API exposed by libLTO to create
modules in local contexts.
The goal here isn't to test the symbol-related API extensively, just to
confirm that these modules work at all. (I'll be shifting code around
soon that should be NFC and I realized there was no test coverage.)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224408 91177308-0d34-0410-b5e6-96231b3b80d8
The line mapping information for dynamic code is reported incorrectly. It causes VTune to map LLVM generated code to source lines incorrectly. This patch fix this issue.
Patch by Denis Pravdin.
Differential Revision: http://reviews.llvm.org/D6603
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224229 91177308-0d34-0410-b5e6-96231b3b80d8
The goal of this tool is to replicate Darwin's dsymutil functionality
based on LLVM. dsymutil is a DWARF linker. Darwin's linker (ld64) does
not link the debug information, it leaves it in the object files in
relocatable form, but embbeds a `debug map` into the executable that
describes where to find the debug information and how to relocate it.
When releasing/archiving a binary, dsymutil is called to link all the DWARF
information into a `dsym bundle` that can distributed/stored along with
the binary.
With this commit, the LLVM based dsymutil is just able to parse the STABS
debug maps embedded by ld64 in linked binaries (and not all of them, for
example archives aren't supported yet).
Note that the tool directory is called dsymutil, but the executable is
currently called llvm-dsymutil. This discrepancy will disappear once the
tool will be feature complete. At this point the executable will be renamed
to dsymutil, but until then you do not want it to override the system one.
Differential Revision: http://reviews.llvm.org/D6242
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224134 91177308-0d34-0410-b5e6-96231b3b80d8
In release builds this is actually possible as without asserts there is
no testing of the actual read bytes and the variables could be partially
uninitialized.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224114 91177308-0d34-0410-b5e6-96231b3b80d8
This reflects the typelessness of `Metadata` in the bitcode format,
removing types from all metadata operands.
`METADATA_VALUE` represents a `ValueAsMetadata`, and always has two
fields: the type and the value.
`METADATA_NODE` represents an `MDNode`, and unlike `METADATA_OLD_NODE`,
doesn't store types. It stores operands at their ID+1 so that `0` can
reference `nullptr` operands.
Part of PR21532.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224073 91177308-0d34-0410-b5e6-96231b3b80d8
This cuts down the number on system calls done by a static llvm-ar producing
lib/libclangSema.a from 9164 to 442.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@224025 91177308-0d34-0410-b5e6-96231b3b80d8
The complicated situation is when we have to keep an alias but drop a GV
that is part of the aliasee.
We used to clone the dropped GV and make the clone internal. This is wasteful
as we know the original will be dropped.
With this patch what is done instead is set the linkage of the original to
internal and replace all uses (but the one in the alias) with a new
declaration that takes the name of the old GV. This saves us from having
to copy the body.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223863 91177308-0d34-0410-b5e6-96231b3b80d8
It is a static method of IRObjectFile, so having to use
IRObjectFile::createIRObjectFile was redundant.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223822 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This is desirable for WebKit and other clients of the llvm-shlib because C++ exit time destructors have a tendency to crash when invoked from multi-threaded applications.
Ideally this option will be temporary, because the ideal fix is to just not have exit time destructors.
Reviewers: chapuni, ributzka
Reviewed By: ributzka
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6572
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223805 91177308-0d34-0410-b5e6-96231b3b80d8
The goal of this tool is to replicate Darwin's dsymutil functionality
based on LLVM. dsymutil is a DWARF linker. Darwin's linker (ld64) does
not link the debug information, it leaves it in the object files in
relocatable form, but embbeds a `debug map` into the executable that
describes where to find the debug information and how to relocate it.
When releasing/archiving a binary, dsymutil is called to link all the DWARF
information into a `dsym bundle` that can distributed/stored along with
the binary.
With this commit, the LLVM based dsymutil is just able to parse the STABS
debug maps embedded by ld64 in linked binaries (and not all of them, for
example archives aren't supported yet).
Note that the tool directory is called dsymutil, but the executable is
currently called llvm-dsymutil. This discrepancy will disappear once the
tool will be feature complete. At this point the executable will be renamed
to dsymutil, but until then you do not want it to override the system one.
Differential Revision: http://reviews.llvm.org/D6242
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223793 91177308-0d34-0410-b5e6-96231b3b80d8
This allows it to work with non trivial manglings like the one in COFF.
Amusingly, this can be tested with gold, as emit-llvm causes the plugin to
exit before any COFF is generated.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223790 91177308-0d34-0410-b5e6-96231b3b80d8
Instead, walk the obj symbol list in parallel to find the GV. This shouldn't
change anything on ELF where global symbols are not mangled, but it is a step
toward supporting other object formats.
Gold itself is ELF only, but bfd ld supports COFF and the logic in the gold
plugin could be reused on lld.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223780 91177308-0d34-0410-b5e6-96231b3b80d8
Introduce install_symlink.cmake from clang/tools/driver/clang_symlink.cmake.
FIXME: Would it be generalized?
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223655 91177308-0d34-0410-b5e6-96231b3b80d8
It is only build if LLVM_BINUTILS_INCDIR is explicitly given, so there is
no point in having extra restrictions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223481 91177308-0d34-0410-b5e6-96231b3b80d8
with fixes. Includes the move of tests for llvm-objdump for universal files to an X86
directory. And the fix where it was failing on linux Rafael tracked down with asan.
I had both Jim Grosbach and Adam Hemet look over the second fix since I could not
set up asan to reproduce with the old version but not with the fix.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223416 91177308-0d34-0410-b5e6-96231b3b80d8
Patch by Ben Gamari!
This redefines the `prefix` attribute introduced previously and
introduces a `prologue` attribute. There are a two primary usecases
that these attributes aim to serve,
1. Function prologue sigils
2. Function hot-patching: Enable the user to insert `nop` operations
at the beginning of the function which can later be safely replaced
with a call to some instrumentation facility
3. Runtime metadata: Allow a compiler to insert data for use by the
runtime during execution. GHC is one example of a compiler that
needs this functionality for its tables-next-to-code functionality.
Previously `prefix` served cases (1) and (2) quite well by allowing the user
to introduce arbitrary data at the entrypoint but before the function
body. Case (3), however, was poorly handled by this approach as it
required that prefix data was valid executable code.
Here we redefine the notion of prefix data to instead be data which
occurs immediately before the function entrypoint (i.e. the symbol
address). Since prefix data now occurs before the function entrypoint,
there is no need for the data to be valid code.
The previous notion of prefix data now goes under the name "prologue
data" to emphasize its duality with the function epilogue.
The intention here is to handle cases (1) and (2) with prologue data and
case (3) with prefix data.
References
----------
This idea arose out of discussions[1] with Reid Kleckner in response to a
proposal to introduce the notion of symbol offsets to enable handling of
case (3).
[1] http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-May/073235.html
Test Plan: testsuite
Differential Revision: http://reviews.llvm.org/D6454
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223189 91177308-0d34-0410-b5e6-96231b3b80d8
llvm-objdump printed out an error message for this off-by-one error,
but because it always exits with 0 whether or not it found an error,
the test (llvm-objdump/coff-many-relocs.test) succeeded.
I made llvm-objdump exit with EXIT_FAILURE when an error is found.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222852 91177308-0d34-0410-b5e6-96231b3b80d8
Previously, when loading an object file, RuntimeDyld (1) took ownership of the
ObjectFile instance (and associated MemoryBuffer), (2) potentially modified the
object in-place, and (3) returned an ObjectImage that managed ownership of the
now-modified object and provided some convenience methods. This scheme accreted
over several years as features were tacked on to RuntimeDyld, and was both
unintuitive and unsafe (See e.g. http://llvm.org/PR20722).
This patch fixes the issue by removing all ownership and in-place modification
of object files from RuntimeDyld. Existing behavior, including debugger
registration, is preserved.
Noteworthy changes include:
(1) ObjectFile instances are now passed to RuntimeDyld by const-ref.
(2) The ObjectImage and ObjectBuffer classes have been removed entirely, they
existed to model ownership within RuntimeDyld, and so are no longer needed.
(3) RuntimeDyld::loadObject now returns an instance of a new class,
RuntimeDyld::LoadedObjectInfo, which can be used to construct a modified
object suitable for registration with the debugger, following the existing
debugger registration scheme.
(4) The JITRegistrar class has been removed, and the GDBRegistrar class has been
re-written as a JITEventListener.
This should fix http://llvm.org/PR20722 .
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222810 91177308-0d34-0410-b5e6-96231b3b80d8
Fix ARMAttributeParser::CPU_arch_profile so that it doesn't switch on the value
'0' as a legal value of this build attribute.
Change-Id: Ie05a08900a82bb10b78c841b437df747ce3bb38e
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222743 91177308-0d34-0410-b5e6-96231b3b80d8
Having two ways to do this doesn't seem terribly helpful and
consistently using the insert version (which we already has) seems like
it'll make the code easier to understand to anyone working with standard
data structures. (I also updated many references to the Entry's
key and value to use first() and second instead of getKey{Data,Length,}
and get/setValue - for similar consistency)
Also removes the GetOrCreateValue functions so there's less surface area
to StringMap to fix/improve/change/accommodate move semantics, etc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222319 91177308-0d34-0410-b5e6-96231b3b80d8
StringSet is still a bit dodgy in that it exposes the raw iterator of
the StringMap parent, which exposes the weird detail that StringSet
actually has a 'value'... but anyway, this is useful for a handful of
clients that want to reference the newly inserted/persistent string data
in the StringSet/Map/Entry/thing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222302 91177308-0d34-0410-b5e6-96231b3b80d8
It printed out base relocation table header as table entry.
This patch also makes llvm-readobj to not skip ABSOLUTE entries
becuase it was confusing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222299 91177308-0d34-0410-b5e6-96231b3b80d8
We claimed that we were printing the Subystem field when we were
actually printing the Characteristics field.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222216 91177308-0d34-0410-b5e6-96231b3b80d8
We were a little lax in a few areas:
- We pretended that import libraries were like any old COFF file, they
are not. In fact, they aren't really COFF files at all, we should
probably grow some specialized functionality to handle them smarter.
- Our symbol iterators were more than happy to attempt to go past the
end of the symbol table if you had a symbol with a bad list of
auxiliary symbols.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222124 91177308-0d34-0410-b5e6-96231b3b80d8
While this program worked correctly with small example programs, larger
ones tickled this bug. I'm working on a reduction because my program is
quite large.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222078 91177308-0d34-0410-b5e6-96231b3b80d8
FYI, removed the unused MCInstrAnalysis as it does not exist for 64-bit ARM and
was causing a “couldn't initialize disassembler for target” error.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222045 91177308-0d34-0410-b5e6-96231b3b80d8
SizeOfHeaders must be aligned to the FileAlignment.
SizeOfImage must be at least the SizeOfHeaders aligned to the
SectionAlignment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222030 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r221842 which was a revert of r221836 and of the
test parts of r221837.
This new version fixes an UB bug pointed out by David (along with
addressing some other review comments), makes some dumping more
resilient to broken input data and forces the accelerator tables
to be dumped in the tests where we use them (this decision is
platform specific otherwise).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222003 91177308-0d34-0410-b5e6-96231b3b80d8
In support of serializing executables, obj2yaml now records the virtual address
and size of sections. It also serializes whatever we strictly need from
the PE header, it expects that it can reconstitute everything else via
inference.
yaml2obj can reconstitute a fully linked executable.
In order to get executables correctly serialized/deserialized, other
bugs were fixed as a circumstance. We now properly respect file and
section alignments. We also avoid writing out string tables unless they
are strictly necessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221975 91177308-0d34-0410-b5e6-96231b3b80d8
This teaches CoverageMapping::getCoveredFunctions to filter to a
particular file and uses that to replace most of the logic found in
llvm-cov report.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221962 91177308-0d34-0410-b5e6-96231b3b80d8
On error conditions, relocAddressLess might claim that a value is less
than itself. Instead, abort llvm-readobj. No functionality change
intended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221872 91177308-0d34-0410-b5e6-96231b3b80d8
lib/Object is supposed to be robust to malformed object files. Don't
assert if we don't have a symbol table. I'll try to come up with a test
case later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221870 91177308-0d34-0410-b5e6-96231b3b80d8
This reverts commit r221836.
The tests are asserting on some buildbots. This also reverts the
test part of r221837 as it relies on dwarfdump dumping the
accelerator tables.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221842 91177308-0d34-0410-b5e6-96231b3b80d8
The class used for the dump only allows to dump for the moment, but
it can (and will) be easily extended to support search also.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221836 91177308-0d34-0410-b5e6-96231b3b80d8
With this patch MCDisassembler::getInstruction takes an ArrayRef<uint8_t>
instead of a MemoryObject.
Even on X86 there is a maximum size an instruction can have. Given
that, it seems way simpler and more efficient to just pass an ArrayRef
to the disassembler instead of a MemoryObject and have it do a virtual
call every time it wants some extra bytes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221751 91177308-0d34-0410-b5e6-96231b3b80d8
Add API for specifying which `LLVMContext` each `lto_module_t` and
`lto_code_gen_t` is in.
In particular, this enables the following flow:
for (auto &File : Files) {
lto_module_t M = lto_module_create_in_local_context(File...);
querySymbols(M);
lto_module_dispose(M);
}
lto_code_gen_t CG = lto_codegen_create_in_local_context();
for (auto &File : FilesToLink) {
lto_module_t M = lto_module_create_in_codegen_context(File..., CG);
lto_codegen_add_module(CG, M);
lto_module_dispose(M);
}
lto_codegen_compile(CG);
lto_codegen_write_merged_modules(CG, ...);
lto_codegen_dispose(CG);
This flow has a few benefits.
- Only one module (two if you count the combined module in the code
generator) is in memory at a time.
- Metadata (and constants) from files that are parsed to query symbols
but not linked into the code generator don't pollute the global
context.
- The first for loop can be parallelized, since each module is in its
own context.
- When the code generator is disposed, the memory from LTO gets freed.
rdar://problem/18767512
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221733 91177308-0d34-0410-b5e6-96231b3b80d8
Instead, we're going to separate metadata from the Value hierarchy. See
PR21532.
This reverts commit r221375.
This reverts commit r221373.
This reverts commit r221359.
This reverts commit r221167.
This reverts commit r221027.
This reverts commit r221024.
This reverts commit r221023.
This reverts commit r220995.
This reverts commit r220994.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221711 91177308-0d34-0410-b5e6-96231b3b80d8
FIXME: It should work on not only Linux but elf-targeting gnu ld.
For example if LLVM_DYLIB_COMPONENTS is "BitWriter Support", CMake emits the command line like;
-Wl,--whole-archive
lib/libLLVMBitWriter.a
lib/libLLVMSupport.a *1
-Wl,--no-whole-archive
lib/libLLVMCore.a
lib/libLLVMSupport.a *2
-lrt -ldl -ltinfo -lpthread -lm
It works since symbols in LLVMCore is resolved with not *2 but *1.
Unfortunately, --gc-sections is not powerful in this case to prune unused "visibility(default)" entries.
I am still experimenting other way not to rely on --whole-archive.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221591 91177308-0d34-0410-b5e6-96231b3b80d8
This introduces the symbol rewriter. This is an IR->IR transformation that is
implemented as a CodeGenPrepare pass. This allows for the transparent
adjustment of the symbols during compilation.
It provides a clean, simple, elegant solution for symbol inter-positioning. This
technique is often used, such as in the various sanitizers and performance
analysis.
The control of this is via a custom YAML syntax map file that indicates source
to destination mapping, so as to avoid having the compiler to know the exact
details of the source to destination transformations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221548 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Teach llvm-symbolizer about PowerPC64 ELF function descriptors. Symbols in the .opd section point to function descriptors, the first word of which is a pointer to the real function. For the purposes of symbolizing we pretend that the symbol points directly to the function.
This is enough to get decent function names in stack traces for unoptimized binaries, which fixes the sanitizer print-stack-trace test on PowerPC64 Linux.
Reviewers: kcc, willschm, samsonov
Reviewed By: samsonov
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6110
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221514 91177308-0d34-0410-b5e6-96231b3b80d8
The ELF symbol `st_other` field might contain additional flags besides
visibility ones. This patch implements support for some MIPS specific
flags.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221491 91177308-0d34-0410-b5e6-96231b3b80d8
add the code and test cases for 32-bit ARM symbolizer.
Also fixed the printing of data in code as it was not using the table correctly
and needed to fix one of the test cases too.
This will break lld’s test/mach-o/arm-interworking-movw.yaml till the tweak
for that is made. Which I’ll be committing immediately after this commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221470 91177308-0d34-0410-b5e6-96231b3b80d8
Change `NamedMDNode::getOperator()` from returning `MDNode *` to
returning `Value *`. To reduce boilerplate at some call sites, add a
`getOperatorAsMDNode()` for named metadata that's expected to only
return `MDNode` -- for now, that's everything, but debug node named
metadata (such as llvm.dbg.cu and llvm.dbg.sp) will soon change. This
is part of PR21433.
Note that there's a follow-up patch to clang for the API change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221375 91177308-0d34-0410-b5e6-96231b3b80d8
DiceTableEntry is 24 bytes on my machine, it's probably better to pass
them by reference.
This fixes PR21464.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221247 91177308-0d34-0410-b5e6-96231b3b80d8
This removes calls to isMaterializable in the following cases:
* It was redundant with a call to isDeclaration now that isDeclaration returns
the correct answer for materializable functions.
* It was followed by a call to Materialize. Just call Materialize and check EC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221050 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch extends the 'show' and 'merge' commands in llvm-profdata to handle
sample PGO formats. Using the 'merge' command it is now possible to convert
one sample PGO format to another.
The only format that is currently not working is 'gcc'. I still need to
implement support for it in lib/ProfileData.
The changes in the sample profile support classes are needed for the
merge operation.
Reviewers: bogner
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D6065
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221032 91177308-0d34-0410-b5e6-96231b3b80d8
The getBinary and getBuffer method now return ordinary pointers of appropriate
const-ness. Ownership is transferred by calling takeBinary(), which returns a
pair of the Binary and a MemoryBuffer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221003 91177308-0d34-0410-b5e6-96231b3b80d8
Do a better job classifying symbols. This increases the consistency
between the COFF handling code and the ELF side of things.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220952 91177308-0d34-0410-b5e6-96231b3b80d8
We're using cl::opt here, but for some reason we're reading out one
particular option by hand instead. This makes -help and the like
behave rather poorly, so let's not do it this way.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220928 91177308-0d34-0410-b5e6-96231b3b80d8
The also-emit-llvm option only supported getting the IR before optimizations.
This patch replaces it with a more generic save-temps option that saves the IR
both before and after optimizations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220885 91177308-0d34-0410-b5e6-96231b3b80d8
I noticed that it was untested, and forcing it on caused some tests to fail:
LLVM :: Linker/metadata-a.ll
LLVM :: Linker/prefixdata.ll
LLVM :: Linker/type-unique-odr-a.ll
LLVM :: Linker/type-unique-simple-a.ll
LLVM :: Linker/type-unique-simple2-a.ll
LLVM :: Linker/type-unique-simple2.ll
LLVM :: Linker/type-unique-type-array-a.ll
LLVM :: Linker/unnamed-addr1-a.ll
LLVM :: Linker/visibility1.ll
If it is to be resurrected, it has to be fixed and we should probably have a
-preserve-source command line option in llvm-mc and run tests with and without
it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220741 91177308-0d34-0410-b5e6-96231b3b80d8
We used to always vectorize (slp and loop vectorize) in the LTO pass pipeline.
r220345 changed it so that we used the PassManager's fields 'LoopVectorize' and
'SLPVectorize' out of the desire to be able to disable vectorization using the
cl::opt flags 'vectorize-loops'/'slp-vectorize' which the before mentioned
fields default to.
Unfortunately, this turns off vectorization because those fields
default to false.
This commit adds flags to the LTO library to disable lto vectorization which
reconciles the desire to optionally disable vectorization during LTO and
the desired behavior of defaulting to enabled vectorization.
We really want tools to set PassManager flags directly to enable/disable
vectorization and not go the route via cl::opt flags *in*
PassManagerBuilder.cpp.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220652 91177308-0d34-0410-b5e6-96231b3b80d8
To do this, change the representation of lazy loaded functions.
The previous representation cannot differentiate between a function whose body
has been removed and one whose body hasn't been read from the .bc file. That
means that in order to drop a function, the entire body had to be read.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220580 91177308-0d34-0410-b5e6-96231b3b80d8
* Read modules lazily
* Don't treat the first file specially, instead merge all inputs into an empty
module.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220501 91177308-0d34-0410-b5e6-96231b3b80d8
This prints disassembly comments for Objective-C references to CFStrings,
Selectors, Classes and method calls.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220500 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
This patch adds a new CMake build setting LLVM_BUILD_LLVM_DYLIB, which defaults to OFF. When set to ON, this will generate a shared library containing most of LLVM. The contents of the shared library can be overriden by specifying LLVM_DYLIB_COMPONENTS. LLVM_DYLIB_COMPONENTS can be set to a semi-colon delimited list of any LLVM components that you llvm-config can resolve.
On Windows, unless you are using Cygwin, you must specify an explicit symbol export file using LLVM_EXPORTED_SYMBOL_FILE. On Cygwin and all unix-like platforms if you do not specify LLVM_EXPORTED_SYMBOL_FILE, an export file containing only the LLVM C API will be auto-generated from the list of LLVM components specified in LLVM_DYLIB_COMPONENTS.
Reviewers: rnk
Reviewed By: rnk
Subscribers: rnk, llvm-commits
Differential Revision: http://reviews.llvm.org/D5890
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220490 91177308-0d34-0410-b5e6-96231b3b80d8
This tool lets us build LLVM components within the tree by setting up a
$GOPATH that resembles a tree fetched in the normal way with "go get".
It is intended that components such as the Go frontend will be built in-tree
using this tool.
Differential Revision: http://reviews.llvm.org/D5902
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220462 91177308-0d34-0410-b5e6-96231b3b80d8
I think it might make sense to make COFF::MaxNumberOfSections16 be a uint32_t, however, that may have wider-reaching implications in other projects, which is why I did not change that declaration.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220384 91177308-0d34-0410-b5e6-96231b3b80d8
This matches the behavior of GNU ar and also makes it easier to implemnt
support for the addlib command.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220336 91177308-0d34-0410-b5e6-96231b3b80d8
This is a micro optimization, but also makes the code a bit more flexible.
The MRIMembers variable is a short term hack. It is going away in the next
commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220334 91177308-0d34-0410-b5e6-96231b3b80d8
Don't duplicate names in comments and remove useless ones. Hopefully anyone
reading this knows what main is.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220298 91177308-0d34-0410-b5e6-96231b3b80d8
Revert "Correctly handle references to section symbols."
Revert "Allow forward references to section symbols."
Rui found a regression I am debugging.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220010 91177308-0d34-0410-b5e6-96231b3b80d8
llvm-symbolizer will consult one of the .dSYM paths passed via -dsym-hint
if it fails to find the .dSYM bundle at the default location.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220004 91177308-0d34-0410-b5e6-96231b3b80d8
When processing assembly like
.long .text
we were creating a new undefined symbol .text. GAS on the other hand would
handle that as a reference to the .text section.
This patch implements that by creating the section symbols earlier so that
they are visible during asm parsing.
The patch also updates llvm-readobj to print the symbol number in the relocation
dump so that the test can differentiate between two sections with the same name.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219829 91177308-0d34-0410-b5e6-96231b3b80d8
I was quiet surprised to find this feature being used. Fortunately the uses
I found look fairly simple. In fact, they are just a very verbose version
of the regular ar commands.
Start implementing it then by parsing the script and setting the command
variables as if we had a regular command line.
This patch adds just enough support to create an empty archive and do a bit
of error checking. In followup patches I will implement at least addmod
and addlib.
From the description in the manual, even the more general case should not
be too hard to implement if needed. The features that don't map 1:1 to
the simple command line are
* Reading from multiple archives.
* Creating multiple archives.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219521 91177308-0d34-0410-b5e6-96231b3b80d8
Long section names are represented as a slash followed by a numeric
ASCII string. This number is an offset into a string table.
Print the appropriate entry in the string table instead of the less
enlightening /4.
N.B. yaml2obj already does the right thing, this test exercises both
sides of the (de-)serialization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219458 91177308-0d34-0410-b5e6-96231b3b80d8