Now that SimplifyCFG uses TTI for the cost heuristic, we can teach BasicTTIImpl
how to query TLI in order to get a more accurate cost for truncates and
zero-extends.
Before this patch, the basic cost heuristic in TargetTransformInfoImplCRTPBase
would have conservatively returned a 'default' TCC_Basic for all zero-extends,
and TCC_Free for truncates on native types.
This patch improves the heuristic so that we query TLI (if available) to get
more accurate answers. If TLI is available, then methods 'isZExtFree' and
'isTruncateFree' can be used to check if a zext/trunc is free for the target.
Added more test cases to SimplifyCFG/X86/speculate-cttz-ctlz.ll.
With this change, SimplifyCFG is now able to speculate a 'cheap' cttz/ctlz
immediately followed by a free zext/trunc.
Differential Revision: http://reviews.llvm.org/D7585
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228923 91177308-0d34-0410-b5e6-96231b3b80d8
This patch is a follow-up of r228826 (see code-review: D7506).
Now that SimplifyCFG uses TargetTransformInfo for cost analysis, we
have to fix the cost heuristic for intrinsic calls to cttz/ctlz.
This patch defines method 'getIntrinsicCost' in BasicTTIImpl: now, BasicTTIImpl
queries TLI to check if a call to cttz/ctlz is cheap for the target.
Added test cases in Transforms/SimplifyCFG/X86 to verify that on x86,
SimplifyCFG only speculates a call to cttz/ctlz if it is cheap.
Differential Revision: http://reviews.llvm.org/D7554
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228829 91177308-0d34-0410-b5e6-96231b3b80d8
The NodeMetadata are maintained in an incremental way. When an edge between
2 nodes has its cost updated, in the course of graph reduction for example,
the NodeMetadata need first to have the old edge cost removed, then the new
edge cost added. Only once the NodeMetadata have been fully updated, it
becomes safe to consider promoting the nodes to the
ConservativelyAllocatable or OptimallyReducible sets. Previously, this
promotion was occuring right after the removing the old cost, and this was
breaking the assumption that a ConservativelyAllocatable should not be
spilled.
This patch also adds asserts to:
- enforces the invariant that a node's reduction can not be downgraded,
- only not provably allocatable or optimally reducible nodes can be spilled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228816 91177308-0d34-0410-b5e6-96231b3b80d8
by using a segment set.
The patch addresses a compile-time performance regression in the LiveIntervals
analysis pass (see http://llvm.org/bugs/show_bug.cgi?id=18580). This regression
is especially critical when compiling long functions. Our analysis had shown
that the most of time is taken for generation of live intervals for physical
registers. Insertions in the middle of the array of live ranges cause quadratic
algorithmic complexity, which is apparently the main reason for the slow-down.
Overview of changes:
- The patch introduces an additional std::set<Segment>* member in LiveRange for
storing segments in the phase of initial creation. The set is used if this
member is not NULL, otherwise everything works the old way.
- The set of operations on LiveRange used during initial creation (i.e. used by
createDeadDefs and extendToUses) have been reimplemented to use the segment
set if it is available.
- After a live range is created the contents of the set are flushed to the
segment vector, because the set is not as efficient as the vector for the
later uses of the live range. After the flushing, the set is deleted and
cannot be used again.
- The set is only for live ranges computed in
LiveIntervalAnalysis::computeLiveInRegUnits() and getRegUnit() but not in
computeVirtRegs(), because I did not bring any performance benefits to
computeVirtRegs() and for some examples even brought a slow down.
Patch by Vaidas Gasiunas <vaidas.gasiunas@sap.com>
Differential Revision: http://reviews.llvm.org/D6013
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228421 91177308-0d34-0410-b5e6-96231b3b80d8
Summary: When evaluating floating point instructions in the inliner, ask the TTI whether it is an expensive operation. By default, it's not an expensive operation. This keeps the default behavior the same as before. The ARM TTI has been updated to return back TCC_Expensive for targets which don't have hardware floating point.
Reviewers: chandlerc, echristo
Reviewed By: echristo
Subscribers: t.p.northover, aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D6936
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228263 91177308-0d34-0410-b5e6-96231b3b80d8
In case CSE reuses a previoulsy unused register the dead-def flag has to
be cleared on the def operand, as exposed by the arm64-cse.ll test.
This fixes PR22439 and the corresponding rdar://19694987
Differential Revision: http://reviews.llvm.org/D7395
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228178 91177308-0d34-0410-b5e6-96231b3b80d8
The PBQP::RegAlloc::MatrixMetadata class assumes that matrices have at least two
rows/columns (for the spill option plus at least one physreg). This patch
ensures that that invariant is met by pre-spilling vregs that have no physreg
options so that no node (and no corresponding edges) need be added to the PBQP
graph.
This fixes a bug in an out-of-tree target that was identified by Jonas Paulsson.
Thanks for tracking this down Jonas!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227942 91177308-0d34-0410-b5e6-96231b3b80d8
now that we have a correct and cached subtarget specific to the
function.
Also, finish providing a cached per-function subtarget in the core
LLVMTargetMachine -- that layer hadn't switched over yet.
The only use of the TargetMachine was to re-lookup a subtarget for
a particular function to work around the fact that TTI was immutable.
Now that it is per-function and we haved a cached subtarget, use it.
This still leaves a few interfaces with real warts on them where we were
passing Function objects through the TTI interface. I'll remove these
and clean their usage up in subsequent commits now that this isn't
necessary.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227738 91177308-0d34-0410-b5e6-96231b3b80d8
intermediate TTI implementation template and instead query up to the
derived class for both the TargetMachine and the TargetLowering.
Most of the derived types had a TLI cached already and there is no need
to store a less precisely typed target machine pointer.
This will in turn make it much cleaner to look up the TLI via
a per-function subtarget instead of the generic subtarget, and it will
pave the way toward pulling the subtarget used for unroll preferences
into the same form once we are *always* using the function to look up
the correct subtarget.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227737 91177308-0d34-0410-b5e6-96231b3b80d8
null.
For some reason some of the original TTI code supported a null target
machine. This seems to have been legacy, and I made matters worse when
refactoring this code by spreading that pattern further through the
various targets.
The TargetMachine can't actually be null, and it doesn't make sense to
support that use case. I've now consistently removed it and removed all
of the code trying to cope with that situation. This is probably good,
as several targets *didn't* cope with it being null despite the null
default argument in their constructors. =]
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227734 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
CUDA driver can unroll loops when jit-compiling PTX. To prevent CUDA
driver from unrolling a loop marked with llvm.loop.unroll.disable is not
unrolled by CUDA driver, we need to emit .pragma "nounroll" at the
header of that loop.
This patch also extracts getting unroll metadata from loop ID metadata
into a shared helper function.
Test Plan: test/CodeGen/NVPTX/nounroll.ll
Reviewers: eliben, meheff, jholewinski
Reviewed By: jholewinski
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D7041
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227703 91177308-0d34-0410-b5e6-96231b3b80d8
base which it adds a single analysis pass to, to instead return the type
erased TargetTransformInfo object constructed for that TargetMachine.
This removes all of the pass variants for TTI. There is now a single TTI
*pass* in the Analysis layer. All of the Analysis <-> Target
communication is through the TTI's type erased interface itself. While
the diff is large here, it is nothing more that code motion to make
types available in a header file for use in a different source file
within each target.
I've tried to keep all the doxygen comments and file boilerplate in line
with this move, but let me know if I missed anything.
With this in place, the next step to making TTI work with the new pass
manager is to introduce a really simple new-style analysis that produces
a TTI object via a callback into this routine on the target machine.
Once we have that, we'll have the building blocks necessary to accept
a function argument as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227685 91177308-0d34-0410-b5e6-96231b3b80d8
type erased interface and a single analysis pass rather than an
extremely complex analysis group.
The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.
I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.
There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.
The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.
Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.
The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]
Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:
1) Improving the TargetMachine interface by having it directly return
a TTI object. Because we have a non-pass object with value semantics
and an internal type erasure mechanism, we can narrow the interface
of the TargetMachine to *just* do what we need: build and return
a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
This will include splitting off a minimal form of it which is
sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
target machine for each function. This may actually be done as part
of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
just a bit messy and exacerbating the complexity of implementing
the TTI in each target.
Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.
Differential Revision: http://reviews.llvm.org/D7293
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227669 91177308-0d34-0410-b5e6-96231b3b80d8
If the personality is not a recognized MSVC personality function, this
pass delegates to the dwarf EH preparation pass. This chaining supports
people on *-windows-itanium or *-windows-gnu targets.
Currently this recognizes some personalities used by MSVC and turns
resume instructions into traps to avoid link errors. Even if cleanups
are not used in the source program, LLVM requires the frontend to emit a
code path that resumes unwinding after an exception. Clang does this,
and we get unreachable resume instructions. PR20300 covers cleaning up
these unreachable calls to resume.
Reviewers: majnemer
Differential Revision: http://reviews.llvm.org/D7216
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227405 91177308-0d34-0410-b5e6-96231b3b80d8
This is a refactoring to restructure the single user of performCustomLowering as a specific lowering pass and remove the custom lowering hook entirely.
Before this change, the LowerIntrinsics pass (note to self: rename!) was essentially acting as a pass manager, but without being structured in terms of passes. Instead, it proxied calls to a set of GCStrategies internally. This adds a lot of conceptual complexity (i.e. GCStrategies are stateful!) for very little benefit. Since there's been interest in keeping the ShadowStackGC working, I extracting it's custom lowering pass into a dedicated pass and just added that to the pass order. It will only run for functions which opt-in to that gc.
I wasn't able to find an easy way to preserve the runtime registration of custom lowering functionality. Given that no user of this exists that I'm aware of, I made the choice to just remove that. If someone really cares, we can look at restoring it via dynamic pass registration in the future.
Note that despite the large diff, none of the lowering code actual changes. I added the framing needed to make it a pass and rename the class, but that's it.
Differential Revision: http://reviews.llvm.org/D7218
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227351 91177308-0d34-0410-b5e6-96231b3b80d8
This change reverts the interesting parts of 226311 (and 227046). This change introduced two problems, and I've been convinced that an alternate approach is preferrable anyways.
The bugs were:
- Registery appears to require all users be within the same linkage unit. After this change, asking for "statepoint-example" in Transform/ would sometimes get you nullptr, whereas asking the same question in CodeGen would return the right GCStrategy. The correct long term fix is to get rid of the utter hack which is Registry, but I don't have time for that right now. 227046 appears to have been an attempt to fix this, but I don't believe it does so completely.
- GCMetadataPrinter::finishAssembly was being called more than once per GCStrategy. Each Strategy was being added to the GCModuleInfo multiple times.
Once I get time again, I'm going to split GCModuleInfo into the gc.root specific part and a GCStrategy owning Analysis pass. I'm probably also going to kill off the Registry. Once that's done, I'll move the new GCStrategyAnalysis and all built in GCStrategies into Analysis. (As original suggested by Chandler.) This will accomplish my original goal of being able to access GCStrategy from Transform/ without adding all of the builtin GCs to IR/.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227109 91177308-0d34-0410-b5e6-96231b3b80d8
This mostly reverts commit r222062 and replaces it with a new enum. At
some point this enum will grow at least for other MSVC EH personalities.
Also beefs up the way we were sniffing the personality function.
Previously we would emit the Itanium LSDA despite using
__C_specific_handler.
Reviewers: majnemer
Differential Revision: http://reviews.llvm.org/D6987
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226920 91177308-0d34-0410-b5e6-96231b3b80d8
Summary:
Some parsers need references back to the option they are members of. This is used for handling the argument string as well as by the various pass name parsers for making pass names into flags.
Making parsers that need to refer back to the option have a reference to the option eliminates some of the members of various parsers, and enables further code cleanup.
Reviewers: dexonsmith
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7131
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226864 91177308-0d34-0410-b5e6-96231b3b80d8
Specifically, gc.result benefits from this greatly. Instead of:
gc.result.int.*
gc.result.float.*
gc.result.ptr.*
...
We now have a gc.result.* that can specialize to literally any type.
Differential Revision: http://reviews.llvm.org/D7020
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226857 91177308-0d34-0410-b5e6-96231b3b80d8
The problem occurs when after vectorization we have type
<2 x i32>. This type is promoted to <2 x i64> and then requires
additional efforts for expanding loads and truncating stores.
I added EXPAND / TRUNCATE attributes to the masked load/store
SDNodes. The code now contains additional shuffles.
I've prepared changes in the cost estimation for masked memory
operations, it will be submitted separately.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226808 91177308-0d34-0410-b5e6-96231b3b80d8
This was not necessary before as this case can only be detected when the
liveness analysis is at subregister level.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226733 91177308-0d34-0410-b5e6-96231b3b80d8
This cleans up code and is more in line with the general philosophy of
modifying LiveIntervals through LiveIntervalAnalysis instead of changing
them directly.
This also fixes a case where SplitEditor::removeBackCopies() would miss
the subregister ranges.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226690 91177308-0d34-0410-b5e6-96231b3b80d8
This cleans up code and is more in line with the general philosophy of
modifying LiveIntervals through LiveIntervalAnalysis instead of changing
them directly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226687 91177308-0d34-0410-b5e6-96231b3b80d8
frontends to use a DIExpression with a DW_OP_deref instead.
This is not only a much more natural place for this informationl; there
is also a technical reason: The FlagIndirectVariable is used to mark a
variable that is turned into a reference by virtue of the calling
convention; this happens for example to aggregate return values.
The inliner, for example, may actually need to undo this indirection to
correctly represent the value in its new context. This is impossible to
implement because the DIVariable can't be safely modified. We can however
safely construct a new DIExpression on the fly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226476 91177308-0d34-0410-b5e6-96231b3b80d8
Note: This change ended up being slightly more controversial than expected. Chandler has tentatively okayed this for the moment, but I may be revisiting this in the near future after we settle some high level questions.
Rather than have the GCStrategy object owned by the GCModuleInfo - which is an immutable analysis pass used mainly by gc.root - have it be owned by the LLVMContext. This simplifies the ownership logic (i.e. can you have two instances of the same strategy at once?), but more importantly, allows us to access the GCStrategy in the middle end optimizer. To this end, I add an accessor through Function which becomes the canonical way to get at a GCStrategy instance.
In the near future, this will allows me to move some of the checks from http://reviews.llvm.org/D6808 into the Verifier itself, and to introduce optimization legality predicates for some of the recent additions to InstCombine. (These will follow as separate changes.)
Differential Revision: http://reviews.llvm.org/D6811
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226311 91177308-0d34-0410-b5e6-96231b3b80d8
Searching all of the existing gc.root implementations I'm aware of (all three of them), there was exactly one use of this mechanism, and that was to implement a performance improvement that should have been applied to the default lowering.
Having this function is requiring a dependency on a CodeGen class (MachineFunction), in a class which is otherwise completely independent of CodeGen. I could solve this differently, but given that I see absolutely no value in preserving this mechanism, I going to just get rid of it.
Note: Tis is the first time I'm intentionally breaking previously supported gc.root functionality. Given 3.6 has branched, I believe this is a good time to do this.
Differential Revision: http://reviews.llvm.org/D7004
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226305 91177308-0d34-0410-b5e6-96231b3b80d8
utils/sort_includes.py.
I clearly haven't done this in a while, so more changed than usual. This
even uncovered a missing include from the InstrProf library that I've
added. No functionality changed here, just mechanical cleanup of the
include order.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225974 91177308-0d34-0410-b5e6-96231b3b80d8
When processing an array, every Elt has the same layout, it is
useless to recursively call each ComputeLinearIndex on each element.
Just do it once and multiply by the number of elements.
Differential Revision: http://reviews.llvm.org/D6832
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225949 91177308-0d34-0410-b5e6-96231b3b80d8
Now that the source and destination types can be specified,
allow doing an expansion that doesn't use an EXTLOAD of the
result type. Try to do a legal extload to an intermediate type
and extend that if possible.
This generalizes the special case custom lowering of extloads
R600 has been using to work around this problem.
This also happens to fix a bug that would incorrectly use more
aligned loads than should be used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225925 91177308-0d34-0410-b5e6-96231b3b80d8