PowerPC supports pre-increment load/store instructions (except for Altivec/VSX
vector load/stores). Using these on embedded cores can be very important, but
most loops are not naturally set up to use them. We can often change that,
however, by placing loops into a non-canonical form. Generically, this means
transforming loops like this:
for (int i = 0; i < n; ++i)
array[i] = c;
to look like this:
T *p = array[-1];
for (int i = 0; i < n; ++i)
*++p = c;
the key point is that addresses accessed are pulled into dedicated PHIs and
"pre-decremented" in the loop preheader. This allows the use of pre-increment
load/store instructions without loop peeling.
A target-specific late IR-level pass (running post-LSR), PPCLoopPreIncPrep, is
introduced to perform this transformation. I've used this code out-of-tree for
generating code for the PPC A2 for over a year. Somewhat to my surprise,
running the test suite + externals on a P7 with this transformation enabled
showed no performance regressions, and one speedup:
External/SPEC/CINT2006/483.xalancbmk/483.xalancbmk
-2.32514% +/- 1.03736%
So I'm going to enable it on everything for now. I was surprised by this
because, on the POWER cores, these pre-increment load/store instructions are
cracked (and, thus, harder to schedule effectively). But seeing no regressions,
and feeling that it is generally easier to split instructions apart late than
it is to combine them late, this might be the better approach regardless.
In the future, we might want to integrate this functionality into LSR (but
currently LSR does not create new PHI nodes, so (for that and other reasons)
significant work would need to be done).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228328 91177308-0d34-0410-b5e6-96231b3b80d8
MachineLICM uses a callback named hasLowDefLatency to determine if an
instruction def operand has a 'low' latency. If all relevant operands have a
'low' latency, the instruction is considered too cheap to hoist out of loops
even in low-register-pressure situations. On PowerPC cores, both the embedded
cores and the others, there is no reason to believe that this is a good choice:
all instructions have a cost inside a loop, and hoisting them when not limited
by register pressure is a reasonable default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225471 91177308-0d34-0410-b5e6-96231b3b80d8