take multiple cycles to decode.
For the current if-converter clients (actually only ARM), the instructions that
are predicated on false are not nops. They would still take machine cycles to
decode. Micro-coded instructions such as LDM / STM can potentially take multiple
cycles to decode. If-converter should take treat them as non-micro-coded
simple instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113570 91177308-0d34-0410-b5e6-96231b3b80d8
Since mem2reg isn't run at -O0, we get a ton of reloads from the stack,
for example, before, this code:
int foo(int x, int y, int z) {
return x+y+z;
}
used to compile into:
_foo: ## @foo
subq $12, %rsp
movl %edi, 8(%rsp)
movl %esi, 4(%rsp)
movl %edx, (%rsp)
movl 8(%rsp), %edx
movl 4(%rsp), %esi
addl %edx, %esi
movl (%rsp), %edx
addl %esi, %edx
movl %edx, %eax
addq $12, %rsp
ret
Now we produce:
_foo: ## @foo
subq $12, %rsp
movl %edi, 8(%rsp)
movl %esi, 4(%rsp)
movl %edx, (%rsp)
movl 8(%rsp), %edx
addl 4(%rsp), %edx ## Folded load
addl (%rsp), %edx ## Folded load
movl %edx, %eax
addq $12, %rsp
ret
Fewer instructions and less register use = faster compiles.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@113102 91177308-0d34-0410-b5e6-96231b3b80d8
solve the root problem, but it corrects the bug in the code I added to
support legalizing in the case where the non-extended type is also legal.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112997 91177308-0d34-0410-b5e6-96231b3b80d8
there are clearly no stores between the load and the store. This fixes
this miscompile reported as PR7833.
This breaks the test/CodeGen/X86/narrow_op-2.ll optimization, which is
safe, but awkward to prove safe. Move it to X86's README.txt.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112861 91177308-0d34-0410-b5e6-96231b3b80d8
expanding: e.g. <2 x float> -> <4 x float> instead of -> 2 floats. This
affects two places in the code: handling cross block values and handling
function return and arguments. Since vectors are already widened by
legalizetypes, this gives us much better code and unblocks x86-64 abi
and SPU abi work.
For example, this (which is a silly example of a cross-block value):
define <4 x float> @test2(<4 x float> %A) nounwind {
%B = shufflevector <4 x float> %A, <4 x float> undef, <2 x i32> <i32 0, i32 1>
%C = fadd <2 x float> %B, %B
br label %BB
BB:
%D = fadd <2 x float> %C, %C
%E = shufflevector <2 x float> %D, <2 x float> undef, <4 x i32> <i32 0, i32 1, i32 undef, i32 undef>
ret <4 x float> %E
}
Now compiles into:
_test2: ## @test2
## BB#0:
addps %xmm0, %xmm0
addps %xmm0, %xmm0
ret
previously it compiled into:
_test2: ## @test2
## BB#0:
addps %xmm0, %xmm0
pshufd $1, %xmm0, %xmm1
## kill: XMM0<def> XMM0<kill> XMM0<def>
insertps $0, %xmm0, %xmm0
insertps $16, %xmm1, %xmm0
addps %xmm0, %xmm0
ret
This implements rdar://8230384
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112101 91177308-0d34-0410-b5e6-96231b3b80d8
hierarchy with virtual methods and using llvm_unreachable to properly indicate
unreachable states which would otherwise leave variables uninitialized.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111803 91177308-0d34-0410-b5e6-96231b3b80d8
it involves specific floating-point types, legalize should expand an
extending load to a non-extending load followed by a separate extend operation.
For example, we currently expand SEXTLOAD to EXTLOAD+SIGN_EXTEND_INREG (and
assert that EXTLOAD should always be supported). Now we can expand that to
LOAD+SIGN_EXTEND. This is needed to allow vector SIGN_EXTEND and ZERO_EXTEND
to be used for NEON.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@111586 91177308-0d34-0410-b5e6-96231b3b80d8
check the range of the constant when optimizing a comparison between a
constant and a sign_extend_inreg node.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109854 91177308-0d34-0410-b5e6-96231b3b80d8
protectors, to be near the stack protectors on the stack. Accomplish this by
tagging the stack object with a predicate that indicates that it would trigger
this. In the prolog-epilog inserter, assign these objects to the stack after the
stack protector but before the other objects.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109481 91177308-0d34-0410-b5e6-96231b3b80d8
appropriate for targets without detailed instruction iterineries.
The scheduler schedules for increased instruction level parallelism in
low register pressure situation; it schedules to reduce register pressure
when the register pressure becomes high.
On x86_64, this is a win for all tests in CFP2000. It also sped up 256.bzip2
by 16%.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109300 91177308-0d34-0410-b5e6-96231b3b80d8
it's too late to start backing off aggressive latency scheduling when most
of the registers are in use so the threshold should be a bit tighter.
- Correctly handle live out's and extract_subreg etc.
- Enable register pressure aware scheduling by default for hybrid scheduler.
For ARM, this is almost always a win on # of instructions. It's runtime
neutral for most of the tests. But for some kernels with high register
pressure it can be a huge win. e.g. 464.h264ref reduced number of spills by
54 and sped up by 20%.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109279 91177308-0d34-0410-b5e6-96231b3b80d8
update the current basic block in addition to the current insert
position, so that they remain consistent. This fixes rdar://8204072.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108765 91177308-0d34-0410-b5e6-96231b3b80d8
I am assured by people more knowledgeable than me that there are no rounding issues in eliminating this.
This fixed <rdar://problem/8197504>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108639 91177308-0d34-0410-b5e6-96231b3b80d8
since it doesn't work for front-ends which don't emit column information
(which includes llvm-gcc in its present configuration), and doesn't
work for clang for K&R style variables where the variables are declared
in a different order from the parameter list.
Instead, make a separate pass through the instructions to collect the
llvm.dbg.declare instructions in order. This ensures that the debug
information for variables is emitted in this order.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108538 91177308-0d34-0410-b5e6-96231b3b80d8
occasions, caused code to be generated in a different order.
All cases I've seen involved float softening in the type
legalizer, and this could be perhaps be fixed there, but
it's better not to generate things differently in the first
place. 7797940 (6/29/2010..7/15/2010).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108484 91177308-0d34-0410-b5e6-96231b3b80d8
the function. We'll just turn it into a "trap" instruction instead.
The problem with not handling this is that it might generate a prologue without
the equivalent epilogue to go with it:
$ cat t.ll
define void @foo() {
entry:
unreachable
}
$ llc -o - t.ll -relocation-model=pic -disable-fp-elim -unwind-tables
.section __TEXT,__text,regular,pure_instructions
.globl _foo
.align 4, 0x90
_foo: ## @foo
Leh_func_begin0:
## BB#0: ## %entry
pushq %rbp
Ltmp0:
movq %rsp, %rbp
Ltmp1:
Leh_func_end0:
...
The unwind tables then have bad data in them causing all sorts of problems.
Fixes <rdar://problem/8096481>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108473 91177308-0d34-0410-b5e6-96231b3b80d8
-enable-no-nans-fp-math and -enable-no-infs-fp-math. All of the current codegen fp math optimizations only care whether the fp arithmetics arguments and results can never be NaN.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108465 91177308-0d34-0410-b5e6-96231b3b80d8
constants, since they may not be emited near the other instructions
which get the same line, and this confuses debug info.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108302 91177308-0d34-0410-b5e6-96231b3b80d8
correct alignment information, which simplifies ExpandRes_VAARG a bit.
The patch introduces a new alignment information to TargetLoweringInfo. This is
needed since the two natural candidates cannot be used:
* The 's' in target data: If this is set to the minimal alignment of any
argument, getCallFrameTypeAlignment would return 4 for doubles on ARM for
example.
* The getTransientStackAlignment method. It is possible for an architecture to
have argument less aligned than what we maintain the stack pointer.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108072 91177308-0d34-0410-b5e6-96231b3b80d8
The remaining copyRegToReg calls actually check the return value (shock!), so we
cannot trivially replace them with COPY instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108069 91177308-0d34-0410-b5e6-96231b3b80d8
if a block is split (by a custom inserter), the insert point may be in a
different block than it was originally. This fixes 32-bit llvm-gcc
bootstrap builds, and I haven't been able to reproduce it otherwise.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108060 91177308-0d34-0410-b5e6-96231b3b80d8
ScheduleDAGEmit, TwoAddressLowering, and PHIElimination.
This switches the bulk of register copies to using COPY, but many less used
copyRegToReg calls remain.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108050 91177308-0d34-0410-b5e6-96231b3b80d8
- Check getBytesToPopOnReturn().
- Eschew ST0 and ST1 for return values.
- Fix the PIC base register initialization so that it doesn't ever
fail to end up the top of the entry block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108039 91177308-0d34-0410-b5e6-96231b3b80d8
U utils/TableGen/FastISelEmitter.cpp
--- Reverse-merging r107943 into '.':
U test/CodeGen/X86/fast-isel.ll
U test/CodeGen/X86/fast-isel-loads.ll
U include/llvm/Target/TargetLowering.h
U include/llvm/Support/PassNameParser.h
U include/llvm/CodeGen/FunctionLoweringInfo.h
U include/llvm/CodeGen/CallingConvLower.h
U include/llvm/CodeGen/FastISel.h
U include/llvm/CodeGen/SelectionDAGISel.h
U lib/CodeGen/LLVMTargetMachine.cpp
U lib/CodeGen/CallingConvLower.cpp
U lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
U lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp
U lib/CodeGen/SelectionDAG/FastISel.cpp
U lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
U lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp
U lib/CodeGen/SelectionDAG/InstrEmitter.cpp
U lib/CodeGen/SelectionDAG/TargetLowering.cpp
U lib/Target/XCore/XCoreISelLowering.cpp
U lib/Target/XCore/XCoreISelLowering.h
U lib/Target/X86/X86ISelLowering.cpp
U lib/Target/X86/X86FastISel.cpp
U lib/Target/X86/X86ISelLowering.h
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107987 91177308-0d34-0410-b5e6-96231b3b80d8
disabled and then never turned back on again. Adjust some tests, one because
this change avoids an unnecessary instruction, and the other to make it
continue testing what it was intended to test.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107941 91177308-0d34-0410-b5e6-96231b3b80d8
EXTRACT_SUBREG no longer appears as a machine instruction. Use COPY instead.
Add isCopy() checks in many places using isMoveInstr() and isExtractSubreg().
The isMoveInstr hook will be removed later.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107879 91177308-0d34-0410-b5e6-96231b3b80d8
around everywhere, and also give it an InsertPt member, to enable isel
to operate at an arbitrary position within a block, rather than just
appending to a block.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107791 91177308-0d34-0410-b5e6-96231b3b80d8
instance, rather than pointers to all of FunctionLoweringInfo's
members.
This eliminates an NDEBUG ABI sensitivity.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107789 91177308-0d34-0410-b5e6-96231b3b80d8
than assuming a target will custom lower them. Targets which do so should
exlicitly mark them as having custom lowerings. PR7454.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107734 91177308-0d34-0410-b5e6-96231b3b80d8
PrologEpilog code, and use it to determine whether
the asm forces stack alignment or not. gcc consistently
does not do this for GCC-style asms; Apple gcc inconsistently
sometimes does it for asm blocks. There is no
convenient place to put a bit in either the SDNode or
the MachineInstr form, so I've added an extra operand
to each; unlovely, but it does allow for expansion for
more bits, should we need it. PR 5125. Some
existing testcases are affected.
The operand lists of the SDNode and MachineInstr forms
are indexed with awesome mnemonics, like "2"; I may
fix this someday, but not now. I'm not making it any
worse. If anyone is inspired I think you can find all
the right places from this patch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107506 91177308-0d34-0410-b5e6-96231b3b80d8
available in a register. This is pretty primitive, but it reduces the
number of instructions in common testcases by 4%.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107380 91177308-0d34-0410-b5e6-96231b3b80d8
of getPhysicalRegisterRegClass with it.
If we want to make a copy (or estimate its cost), it is better to use the
smallest class as more efficient operations might be possible.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107140 91177308-0d34-0410-b5e6-96231b3b80d8
have to be registers, per gcc documentation. This affects
the logic for determining what "g" should lower to. PR 7393.
A couple of existing testcases are affected.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107079 91177308-0d34-0410-b5e6-96231b3b80d8
for an "i" constraint should get lowered; PR 6309. While
this argument was passed around a lot, this is the only
place it was used, so it goes away from a lot of other
places.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106893 91177308-0d34-0410-b5e6-96231b3b80d8
original SDNode. This is badness. Also, this function allows one SDNode to point
multiple flags to another SDNode. Badness as well.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106793 91177308-0d34-0410-b5e6-96231b3b80d8
when the condition is constant. This optimization shouldn't be
necessary, because codegen shouldn't be able to find dead control
paths that the IR-level optimizer can't find. And it's undesirable,
because it encourages bugpoint to leave "br i1 false" branches
in its output. And it wasn't updating the CFG.
I updated all the tests I could, but some tests are too reduced
and I wasn't able to meaningfully preserve them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106748 91177308-0d34-0410-b5e6-96231b3b80d8
into the same node, but with different non-memory operands, we need to replace
the memory operands after it's finished morphing.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106643 91177308-0d34-0410-b5e6-96231b3b80d8
atomic intrinsics, either because the use locking instructions for the
atomics, or because they perform the locking directly. Add support in the
DAG combiner to fold away the fences.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106630 91177308-0d34-0410-b5e6-96231b3b80d8
Split the code for materializing a value out of
SelectionDAGBuilder::getValue into a helper function, so that it can
be used in other ways. Add a new getNonRegisterValue function which
uses it, for use in code which doesn't want a CopyFromReg even
when FuncMap.ValueMap already has an entry for it.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106422 91177308-0d34-0410-b5e6-96231b3b80d8
entries used by llvm-gcc. *_[U]MIN and such can be added later if needed.
This enables the front ends to simplify handling of the atomic intrinsics by
removing the target-specific decision about which targets can handle the
intrinsics.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106321 91177308-0d34-0410-b5e6-96231b3b80d8
switch from this:
if (TimePassesIsEnabled) {
NamedRegionTimer T(Name, GroupName);
do_something();
} else {
do_something(); // duplicate the code, this time without a timer!
}
to this:
{
NamedRegionTimer T(Name, GroupName, TimePassesIsEnabled);
do_something();
}
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106285 91177308-0d34-0410-b5e6-96231b3b80d8
addresses a longstanding deficiency noted in many FIXMEs scattered
across all the targets.
This effectively moves the problem up one level, replacing eleven
FIXMEs in the targets with eight FIXMEs in CodeGen, plus one path
through FastISel where we actually supply a DebugLoc, fixing Radar
7421831.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106243 91177308-0d34-0410-b5e6-96231b3b80d8
for the moment. The implementation of the libcall will follow.
Currently, the llvm-gcc knows when the intrinsics can be correctly handled by
the back end and only generates them in those cases, issuing libcalls directly
otherwise. That's too much coupling. The intrinsics should always be
generated and the back end decide how to handle them, be it with a libcall,
inline code, or whatever. This patch is a step in that direction.
rdar://8097623
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@106227 91177308-0d34-0410-b5e6-96231b3b80d8
This is a bit of a hack to make inline asm look more like call instructions.
It would be better to produce correct dead flags during isel.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105749 91177308-0d34-0410-b5e6-96231b3b80d8
replace an OpA with a widened OpB, it is possible to get new uses of OpA due to CSE
when recursively updating nodes. Since OpA has been processed, the new uses are
not examined again. The patch checks if this occurred and it it did, updates the
new uses of OpA to use OpB.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105453 91177308-0d34-0410-b5e6-96231b3b80d8
expansion is the same as that used by LegalizeDAG.
The resulting code sucks in terms of performance/codesize on x86-32 for a
64-bit operation; I haven't looked into whether different expansions might be
better in general.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105378 91177308-0d34-0410-b5e6-96231b3b80d8
that are too large. This causes the freebsd bootloader to be too
large apparently.
It's unclear if this should be an -Os or -Oz thing. Thoughts welcome.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105228 91177308-0d34-0410-b5e6-96231b3b80d8
shouldn't have a TargetLoweringInfo member. And FunctionLoweringInfo::set
doesn't needs its EnableFastISel argument.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105101 91177308-0d34-0410-b5e6-96231b3b80d8
implementing pop with a linear search for a "best" element. The priority
queue was a neat idea, but in practice the comparison functions depend
on dynamic information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104718 91177308-0d34-0410-b5e6-96231b3b80d8
Mon Ping provided; unfortunately bugpoint failed to
reduce it, but I think it's important to have a test for
this in the suite. 8023512.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104624 91177308-0d34-0410-b5e6-96231b3b80d8
so that it will continue to test what it was meant to test when I commit a
separate change for better support of BUILD_VECTOR and VECTOR_SHUFFLE for Neon.
Fix a DAG combiner crash exposed by this test change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104380 91177308-0d34-0410-b5e6-96231b3b80d8
pipeline stall. It's useful for targets like ARM cortex-a8. NEON has a lot
of long latency instructions so a strict register pressure reduction
scheduler does not work well.
Early experiments show this speeds up some NEON loops by over 30%.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104216 91177308-0d34-0410-b5e6-96231b3b80d8
test/Codegen/ARM/reg_sequence.ll but it doesn't affect the generated code
because the coalescer cleans it up. Radar 7998853.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104185 91177308-0d34-0410-b5e6-96231b3b80d8
need to be promoted. The BUILD_VECTOR and EXTRACT_VECTOR_ELT nodes generated
here already allow the promoted type to be used without further changes, so
just do the promotion. This fixes part of pr7167.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104141 91177308-0d34-0410-b5e6-96231b3b80d8
The trouble arises when the result of a vector cmp + sext is then and'ed with all ones. Instcombine will turn it into a vector cmp + zext, dag combiner will miss turning it into a vsetcc and hell breaks loose after that.
Teach dag combine to turn a vector cpm + zest into a vsetcc + and 1. This fixes rdar://7923010.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@104094 91177308-0d34-0410-b5e6-96231b3b80d8
- Change the logic DisableFramePointerElim() to check for the
-disable-non-leaf-fp-elim before -disable-fp-elim.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103990 91177308-0d34-0410-b5e6-96231b3b80d8
The implementation in LegalizeIntegerTypes to handle this as
sint64->float + appropriate power of 2 is subject to double rounding,
considered incorrect by numerics people. Use this implementation only
when it is safe. This leads to using library calls in some cases
that produced inline code before, but it's correct now.
(EVTToAPFloatSemantics belongs somewhere else, any suggestions?)
Add a correctly rounding (though not particularly fast) conversion
that uses X87 80-bit computations for x86-32.
7885399, 5901940. This shows up in gcc.c-torture/execute/ieee/rbug.c
in the gcc testsuite on some platforms.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103883 91177308-0d34-0410-b5e6-96231b3b80d8
the variable actually tracks.
N.B., several back-ends are using "HasCalls" as being synonymous for something
that adjusts the stack. This isn't 100% correct and should be looked into.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103802 91177308-0d34-0410-b5e6-96231b3b80d8
create separate virtual registers for CopyFromReg values, so uses of
them don't necessarily kill the value.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103519 91177308-0d34-0410-b5e6-96231b3b80d8
to LLVM_LIBRARY_VISIBILITY and introduce LLVM_GLOBAL_VISIBILITY, which is
the opposite, for future use by dragonegg.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103495 91177308-0d34-0410-b5e6-96231b3b80d8
Move EmitTargetCodeForMemcpy, EmitTargetCodeForMemset, and
EmitTargetCodeForMemmove out of TargetLowering and into
SelectionDAGInfo to exercise this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103481 91177308-0d34-0410-b5e6-96231b3b80d8
getConstantFP to accept the two supported long double
target types. This was not the original intent, but
there are other places that assume this works and it's
easy enough to do.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103299 91177308-0d34-0410-b5e6-96231b3b80d8