Other than recognizing the attribute, the patch does little else.
It changes the branch probability analyzer so that edges into
blocks postdominated by a cold function are given low weight.
Added analysis and code generation tests. Added documentation for the
new attribute.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182638 91177308-0d34-0410-b5e6-96231b3b80d8
This is useful if something that looks like (x & (1 << y)) ? 64 : 32 is
the divisor in a modulo operation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182200 91177308-0d34-0410-b5e6-96231b3b80d8
BitVector/SmallBitVector::reference::operator bool remain implicit since
they model more exactly a bool, rather than something else that can be
boolean tested.
The most common (non-buggy) case are where such objects are used as
return expressions in bool-returning functions or as boolean function
arguments. In those cases I've used (& added if necessary) a named
function to provide the equivalent (or sometimes negative, depending on
convenient wording) test.
One behavior change (YAMLParser) was made, though no test case is
included as I'm not sure how to reach that code path. Essentially any
comparison of llvm::yaml::document_iterators would be invalid if neither
iterator was at the end.
This helped uncover a couple of bugs in Clang - test cases provided for
those in a separate commit along with similar changes to `operator bool`
instances in Clang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@181868 91177308-0d34-0410-b5e6-96231b3b80d8
the things, and renames it to CBindingWrapping.h. I also moved
CBindingWrapping.h into Support/.
This new file just contains the macros for defining different wrap/unwrap
methods.
The calls to those macros, as well as any custom wrap/unwrap definitions
(like for array of Values for example), are put into corresponding C++
headers.
Doing this required some #include surgery, since some .cpp files relied
on the fact that including Wrap.h implicitly caused the inclusion of a
bunch of other things.
This also now means that the C++ headers will include their corresponding
C API headers; for example Value.h must include llvm-c/Core.h. I think
this is harmless, since the C API headers contain just external function
declarations and some C types, so I don't believe there should be any
nasty dependency issues here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180881 91177308-0d34-0410-b5e6-96231b3b80d8
We switch the order of offset and field type to make TBAAStructType node
(name, parent node, offset) similar to scalar TBAA node (name, parent node).
TypeIsImmutable is added to TBAAStructTag node.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180654 91177308-0d34-0410-b5e6-96231b3b80d8
The tag is of type TBAANode when flag EnableStructPathTBAA is off.
Move implementation of MDNode::getMostGenericTBAA to TypeBasedAliasAnalysis.cpp
since it depends on how to interprete the MDNodes for scalar TBAA and
struct-path aware TBAA.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180068 91177308-0d34-0410-b5e6-96231b3b80d8
PR15000 has a testcase where the time to compile was bordering on 30s. When I
dropped the limit value to 100, it became a much more managable 6s. The compile
time seems to increase in a roughly linear fashion based on increasing the limit
value. (See the runtimes below.)
So, let's lower the limit to 100 so that they can get a more reasonable compile
time.
Limit Value Time
----------- ----
10 0.9744s
20 1.8035s
30 2.3618s
40 2.9814s
50 3.6988s
60 4.5486s
70 4.9314s
80 5.8012s
90 6.4246s
100 7.0852s
110 7.6634s
120 8.3553s
130 9.0552s
140 9.6820s
150 9.8804s
160 10.8901s
170 10.9855s
180 12.0114s
190 12.6816s
200 13.2754s
210 13.9942s
220 13.8097s
230 14.3272s
240 15.7753s
250 15.6673s
260 16.0541s
270 16.7625s
280 17.3823s
290 18.8213s
300 18.6120s
310 20.0333s
320 19.5165s
330 20.2505s
340 20.7068s
350 21.1833s
360 22.9216s
370 22.2152s
380 23.9390s
390 23.4609s
400 24.0426s
410 24.6410s
420 26.5208s
430 27.7155s
440 26.4142s
450 28.5646s
460 27.3494s
470 29.7255s
480 29.4646s
490 30.5001s
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179713 91177308-0d34-0410-b5e6-96231b3b80d8
This is basically the same fix in three different places. We use a set to avoid
walking the whole tree of a big ConstantExprs multiple times.
For example: (select cmp, (add big_expr 1), (add big_expr 2))
We don't want to visit big_expr twice here, it may consist of thousands of
nodes.
The testcase exercises this by creating an insanely large ConstantExprs out of
a loop. It's questionable if the optimizer should ever create those, but this
can be triggered with real C code. Fixes PR15714.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179458 91177308-0d34-0410-b5e6-96231b3b80d8
Added PathAliases to check if two struct-path tags can alias.
Added command line option -struct-path-tbaa.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179337 91177308-0d34-0410-b5e6-96231b3b80d8
On certain architectures we can support efficient vectorized version of
instructions if the operand value is uniform (splat) or a constant scalar.
An example of this is a vector shift on x86.
We can efficiently support
for (i = 0 ; i < ; i += 4)
w[0:3] = v[0:3] << <2, 2, 2, 2>
but not
for (i = 0; i < ; i += 4)
w[0:3] = v[0:3] << x[0:3]
This patch adds a parameter to getArithmeticInstrCost to further qualify operand
values as uniform or uniform constant.
Targets can then choose to return a different cost for instructions with such
operand values.
A follow-up commit will test this feature on x86.
radar://13576547
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178807 91177308-0d34-0410-b5e6-96231b3b80d8
This is a compile time optimization. Before the patch we would do two traversals
on each call to aliasGEP - one with a set size parameter one with UnknownSize.
We can do better by first checking the result of the alias query with
UnknownSize.
Only if this one returns MayAlias do we query a second time using size and type.
This recovers an about 7% compile time regression on spec/ammp.
radar://12349960
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178045 91177308-0d34-0410-b5e6-96231b3b80d8
Fixes PR15570: SEGV: SCEV back-edge info invalid after dead code removal.
Indvars creates a SCEV expression for the loop's back edge taken
count, then determines that the comparison is always true and
removes it.
When loop-unroll asks for the expression, it contains a NULL
SCEVUnknkown (as a CallbackVH).
forgetMemoizedResults should invalidate the loop back edges expression.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177986 91177308-0d34-0410-b5e6-96231b3b80d8
Add "evaluate-tbaa" to print alias queries of loads/stores. Alias queries
between pointers do not include TBAA tags.
Add testing case for "placement new". TBAA currently says NoAlias.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177772 91177308-0d34-0410-b5e6-96231b3b80d8
This handles the case where we have an inbounds GEP with alloca as the pointer.
This fixes the regression in PR12750 and rdar://13286434.
Note that we can also fix this by handling some GEP cases in isKnownNonNull.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177321 91177308-0d34-0410-b5e6-96231b3b80d8
This pass hasn't been touched in two years & would fail with assertions against
the current debug info metadata format (the only test case for it still uses a
many-versions old debug info metadata format)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176707 91177308-0d34-0410-b5e6-96231b3b80d8
The "invariant.load" metadata indicates the memory unit being accessed is immutable.
A load annotated with this metadata can be moved across any store.
As I am not sure if it is legal to move such loads across barrier/fence, this
change dose not allow such transformation.
rdar://11311484
Thank Arnold for code review.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176562 91177308-0d34-0410-b5e6-96231b3b80d8
This adds minimalistic support for PHI nodes to llvm.objectsize() evaluation
fingers crossed so that it does break clang boostrap again..
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176408 91177308-0d34-0410-b5e6-96231b3b80d8
this is similar to getObjectSize(), but doesnt subtract the offset
tweak the BasicAA code accordingly (per PR14988)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176407 91177308-0d34-0410-b5e6-96231b3b80d8
We make the cost for calling libm functions extremely high as emitting the
calls is expensive and causes spills (on x86) so performance suffers. We still
vectorize important calls like ceilf and friends on SSE4.1. and fabs.
Differential Revision: http://llvm-reviews.chandlerc.com/D466
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176287 91177308-0d34-0410-b5e6-96231b3b80d8
This problem is exposed by r171325 which is already reverted. It is rather
hard to fabricate a testing case without it.
r171325 should *NOT* be resurrected as it has a potential problem although
this problem dosen't directly contribute to PR14988.
The bug is tracked by:
- rdar://13063553, and
- http://llvm.org/bugs/show_bug.cgi?id=14988
Thank Arnold for coming up a better solution to this problem. After
comparing this solution and my original proposal, I decided to ditch mine.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176225 91177308-0d34-0410-b5e6-96231b3b80d8
These are two related changes (one in llvm, one in clang).
LLVM:
- rename address_safety => sanitize_address (the enum value is the same, so we preserve binary compatibility with old bitcode)
- rename thread_safety => sanitize_thread
- rename no_uninitialized_checks -> sanitize_memory
CLANG:
- add __attribute__((no_sanitize_address)) as a synonym for __attribute__((no_address_safety_analysis))
- add __attribute__((no_sanitize_thread))
- add __attribute__((no_sanitize_memory))
for S in address thread memory
If -fsanitize=S is present and __attribute__((no_sanitize_S)) is not
set llvm attribute sanitize_S
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176075 91177308-0d34-0410-b5e6-96231b3b80d8