with a fix for self-hosting
rotate CallInst operands, i.e. move callee to the back
of the operand array
the motivation for this patch are laid out in my mail to llvm-commits:
more efficient access to operands and callee, faster callgraph-construction,
smaller compiler binary
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101465 91177308-0d34-0410-b5e6-96231b3b80d8
with a fix
rotate CallInst operands, i.e. move callee to the back
of the operand array
the motivation for this patch are laid out in my mail to llvm-commits:
more efficient access to operands and callee, faster callgraph-construction,
smaller compiler binary
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101397 91177308-0d34-0410-b5e6-96231b3b80d8
of the operand array
the motivation for this patch are laid out in my mail to llvm-commits:
more efficient access to operands and callee, faster callgraph-construction,
smaller compiler binary
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101364 91177308-0d34-0410-b5e6-96231b3b80d8
Added support for address spaces and added a isVolatile field to memcpy, memmove, and memset,
e.g., llvm.memcpy.i32(i8*, i8*, i32, i32) -> llvm.memcpy.p0i8.p0i8.i32(i8*, i8*, i32, i32, i1)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100304 91177308-0d34-0410-b5e6-96231b3b80d8
Added support for address spaces and added a isVolatile field to memcpy, memmove, and memset,
e.g., llvm.memcpy.i32(i8*, i8*, i32, i32) -> llvm.memcpy.p0i8.p0i8.i32(i8*, i8*, i32, i32, i1)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100191 91177308-0d34-0410-b5e6-96231b3b80d8
e.g., llvm.memcpy.i32(i8*, i8*, i32, i32) -> llvm.memcpy.p0i8.p0i8.i32(i8*, i8*, i32, i32, i1)
A update of langref will occur in a subsequent checkin.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@99928 91177308-0d34-0410-b5e6-96231b3b80d8
and T->isPointerTy(). Convert most instances of the first form to the second form.
Requested by Chris.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96344 91177308-0d34-0410-b5e6-96231b3b80d8
The SRThreshold value makes perfect sense for checking if an entire aggregate
should be promoted to a scalar integer, but it is not so good for splitting
an aggregate into its separate elements. A struct may contain a large embedded
array along with some scalar fields that would benefit from being split apart
by SROA. Even if the total aggregate size is large, it may still be good to
perform SROA. Thus, the most important piece of this patch is simply moving
the aggregate size comparison vs. SRThreshold so that it guards only the
aggregate promotion.
We have also been checking the number of elements to decide if an aggregate
should be split up. The limit of "SRThreshold/4" seemed rather arbitrary,
and I don't think it's very useful to derive this limit from SRThreshold
anyway. I've collected some data showing that the current default limit of
32 (since SRThreshold defaults to 128) is a reasonable cutoff for struct
types. One thing suggested by the data is that distinguishing between structs
and arrays might be useful. There are (obviously) a lot more large arrays
than large structs (as measured by the number of elements and not the total
size -- a large array inside a struct still counts as a single element given
the way we do SROA right now). Out of 8377 arrays where we successfully
performed SROA while compiling a large set of benchmarks, only 16 of them had
more than 8 elements. And, for those 16 arrays, it's not at all clear that
SROA was actually beneficial. So, to offset the compile time cost of
investigating more large structs for SROA, the patch lowers the limit on array
elements to 8.
This fixes Apple Radar 7563690.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@95224 91177308-0d34-0410-b5e6-96231b3b80d8
parameter with a default value, instead of just hardcoding it in the
implementation. The limit of MaxLookup = 6 was introduced in r69151 to fix
a performance problem with O(n^2) behavior in instcombine, but the scalarrepl
pass is relying on getUnderlyingObject to go all the way back to an AllocaInst.
Making the limit part of the method signature makes it clear that by default
the result is limited and should help avoid similar problems in the future.
This fixes pr6126.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@94433 91177308-0d34-0410-b5e6-96231b3b80d8
are the same. I had already fixed a similar problem where the source and
destination were different bitcasts derived from the same alloca, but the
previous fix still did not handle the case where both operands are exactly
the same value. Radar 7552893.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@93848 91177308-0d34-0410-b5e6-96231b3b80d8
load is needed when we have a small store into a large alloca (at which
point we get a load/insert/store sequence), but when you do a full-sized
store, this load ends up being dead.
This dead load is bad in really large nasty testcases where the load ends
up causing mem2reg to insert large chains of dependent phi nodes which only
ADCE can delete. Instead of doing this, just don't insert the dead load.
This fixes rdar://6864035
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@91917 91177308-0d34-0410-b5e6-96231b3b80d8
missing check that an array reference doesn't go past the end of the array,
and remove some redundant checks for in-bound array and vector references
that are no longer needed.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@91897 91177308-0d34-0410-b5e6-96231b3b80d8
two-element arrays. After restructuring the SROA code, it was not safe to
do this without adding more checking. It is not clear that this special-case
has really been useful, and removing this simplifies the code quite a bit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@91828 91177308-0d34-0410-b5e6-96231b3b80d8
* change FindElementAndOffset to return a uint64_t instead of unsigned, and
to identify the type to be used for that result in a GEP instruction.
* move "isa<ConstantInt>" to be first in conditional.
* replace some dyn_casts with casts.
* add a comment about handling mem intrinsics.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@91762 91177308-0d34-0410-b5e6-96231b3b80d8
bootstrap. This also replaces the WeakVH references that Chris objected to
with normal Value references.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@91711 91177308-0d34-0410-b5e6-96231b3b80d8
problem", this broke llvm-gcc bootstrap for release builds on
x86_64-apple-darwin10.
This reverts commit db22309800b224a9f5f51baf76071d7a93ce59c9.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@91534 91177308-0d34-0410-b5e6-96231b3b80d8
found last time. Instead of trying to modify the IR while iterating over it,
I've change it to keep a list of WeakVH references to dead instructions, and
then delete those instructions later. I also added some special case code to
detect and handle the situation when both operands of a memcpy intrinsic are
referencing the same alloca.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@91459 91177308-0d34-0410-b5e6-96231b3b80d8
While scanning through the uses of an alloca, keep track of the current offset
relative to the start of the alloca, and check memory references to see if
the offset & size correspond to a component within the alloca. This has the
nice benefit of unifying much of the code from isSafeUseOfAllocation,
isSafeElementUse, and isSafeUseOfBitCastedAllocation. The code to rewrite
the uses of a promoted alloca, after it is determined to be safe, is
reorganized in the same way.
Also, when rewriting GEP instructions, mark them as "in-bounds" since all the
indices are known to be safe.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@91184 91177308-0d34-0410-b5e6-96231b3b80d8
I'm not aware that this does anything significant on its own, but it's
needed for another patch that I'm working on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@90864 91177308-0d34-0410-b5e6-96231b3b80d8
array indexes. The "complex" case of SRoA still handles them, and correctly.
This fixes a weirdness where we'd correctly avoid transforming A[0][42] if
the 42 was too large, but we'd only do it if it was one gep, not two separate
ones.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@90007 91177308-0d34-0410-b5e6-96231b3b80d8
the new predicates I added) instead of going through a context and doing a
pointer comparison. Besides being cheaper, this allows a smart compiler
to turn the if sequence into a switch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83297 91177308-0d34-0410-b5e6-96231b3b80d8