one Value set. This is faster because we only need to use the set when there
isn't already an entry in the map. No functionality change!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@126076 91177308-0d34-0410-b5e6-96231b3b80d8
could end up removing a different function than we intended because it was
functionally equivalent, then end up with a comparison of a function against
itself in the next round of comparisons (the one in the function set and the
one on the deferred list). To fix this, I introduce a choice in the form of
comparison for ComparableFunctions, either normal or "pointer only" used to
find exact Function*'s in lookups.
Also add some debugging statements.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@125180 91177308-0d34-0410-b5e6-96231b3b80d8
that might have changed been affected by a merge elsewhere will have been
removed from the function set, and it isn't needed for performance because we
call grow() ahead of time to prevent reallocations.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124717 91177308-0d34-0410-b5e6-96231b3b80d8
merge vector<intptr_t>::push_back() and vector<void*>::push_back() because
Enumerate() doesn't realize that "i64* null" and "i8** null" are equivalent.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124285 91177308-0d34-0410-b5e6-96231b3b80d8
This fixes the original testcase in PR8927. It also causes a clang
binary built with a patched clang to increase in size by 0.21%.
We can probably get some of the size back by writing a pass that
detects that a global never has its pointer compared and adds
unnamed_addr to it (maybe extend global opt). It is also possible that
there are some other cases clang could add unnamed_addr to.
I will investigate extending globalopt next.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123584 91177308-0d34-0410-b5e6-96231b3b80d8
case where a static caller is itself inlined everywhere else, and
thus may go away if it doesn't get too big due to inlining other
things into it. If there are references to the caller other than
calls, it will not be removed; account for this.
This results in same-day completion of the case in PR8853.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122821 91177308-0d34-0410-b5e6-96231b3b80d8
maintains the guarantee that the DenseSet expects two elements it contains to
not go from inequal to equal under its nose.
As a side-effect, this also lets us switch from iterating to a fixed-point to
actually maintaining a work queue of functions to look at again, and we don't
add thunks to our work queue so we don't need to detect and ignore them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122677 91177308-0d34-0410-b5e6-96231b3b80d8
(if available) as we go so that we get simple constantexprs not insane ones.
This fixes the failure of clang/test/CodeGenCXX/virtual-base-ctor.cpp
that the previous iteration of this patch had.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121111 91177308-0d34-0410-b5e6-96231b3b80d8
optimization.
Consider:
static void foo() {
A = alloca
...
}
static void bar() {
B = alloca
...
call foo();
}
void main() {
bar()
}
The inliner proceeds bottom up, but lets pretend it decides not to inline foo
into bar. When it gets to main, it inlines bar into main(), and says "hey, I
just inlined an alloca "B" into main, lets remember that. Then it keeps going
and finds that it now contains a call to foo. It decides to inline foo into
main, and says "hey, foo has an alloca A, and I have an alloca B from another
inlined call site, lets reuse it". The problem with this of course, is that
the lifetime of A and B are nested, not disjoint.
Unfortunately I can't create a reasonable testcase for this: the one in the
PR is both huge and extremely sensitive, because you minor tweaks end up
causing foo to get inlined into bar too early. We already have tests for the
basic alloca merging optimization and this does not break them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@120995 91177308-0d34-0410-b5e6-96231b3b80d8
testing for dereferenceable pointers into a helper function,
isDereferenceablePointer. Teach it how to reason about GEPs
with simple non-zero indices.
Also eliminate ArgumentPromtion's IsAlwaysValidPointer,
which didn't check for weak externals or out of range gep
indices.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@118840 91177308-0d34-0410-b5e6-96231b3b80d8