Splitting critical edges at the merge point only addressed part of the issue; it is also possible for non-post-domination
to occur when the path from the load to the merge has branches in it. Unfortunately, full anticipation analysis is
time-consuming, so for now approximate it. This is strictly more conservative than real anticipation, so we will miss
some cases that real PRE would allow, but we also no longer insert loads into paths where they didn't exist before. :-)
This is a very slight net positive on SPEC for me (0.5% on average). Most of the benchmarks are largely unaffected, but
when it pays off it pays off decently: 181.mcf improves by 4.5% on my machine.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114785 91177308-0d34-0410-b5e6-96231b3b80d8
input filename so that opt doesn't print the input filename in the
output so that grep lines in the tests don't unintentionally match
strings in the input filename.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@81537 91177308-0d34-0410-b5e6-96231b3b80d8
move loads back past a check that the load address
is valid, see new testcase. The test that went
in with 72661 has exactly this case, except that
the conditional it's moving past is checking
something else; I've settled for changing that
test to reference a global, not a pointer. It
may be possible to scan all the tests you pass and
make sure none of them are checking any component
of the address, but it's not trivial and I'm not
trying to do that here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73632 91177308-0d34-0410-b5e6-96231b3b80d8