Add API to LTOCodeGenerator to specify a strategy for the -internalize
pass.
This is a new attempt at Bill's change in r185882, which he reverted in
r188029 due to problems with the gold linker. This puts the onus on the
linker to decide whether (and what) to internalize.
In particular, running internalize before outputting an object file may
change a 'weak' symbol into an internal one, even though that symbol
could be needed by an external object file --- e.g., with arclite.
This patch enables three strategies:
- LTO_INTERNALIZE_FULL: the default (and the old behaviour).
- LTO_INTERNALIZE_NONE: skip -internalize.
- LTO_INTERNALIZE_HIDDEN: only -internalize symbols with hidden
visibility.
LTO_INTERNALIZE_FULL should be used when linking an executable.
Outputting an object file (e.g., via ld -r) is more complicated, and
depends on whether hidden symbols should be internalized. E.g., for
ld -r, LTO_INTERNALIZE_NONE can be used when -keep_private_externs, and
LTO_INTERNALIZE_HIDDEN can be used otherwise. However,
LTO_INTERNALIZE_FULL is inappropriate, since the output object file will
eventually need to link with others.
lto_codegen_set_internalize_strategy() sets the strategy for subsequent
calls to lto_codegen_write_merged_modules() and lto_codegen_compile*().
<rdar://problem/14334895>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199191 91177308-0d34-0410-b5e6-96231b3b80d8
directory. These passes are already defined in the IR library, and it
doesn't make any sense to have the headers in Analysis.
Long term, I think there is going to be a much better way to divide
these matters. The dominators code should be fully separated into the
abstract graph algorithm and have that put in Support where it becomes
obvious that evn Clang's CFGBlock's can use it. Then the verifier can
manually construct dominance information from the Support-driven
interface while the Analysis library can provide a pass which both
caches, reconstructs, and supports a nice update API.
But those are very long term, and so I don't want to leave the really
confusing structure until that day arrives.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199082 91177308-0d34-0410-b5e6-96231b3b80d8
subsequent changes are easier to review. About to fix some layering
issues, and wanted to separate out the necessary churn.
Also comment and sink the include of "Windows.h" in three .inc files to
match the usage in Memory.inc.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198685 91177308-0d34-0410-b5e6-96231b3b80d8
Before this patch any program that wanted to know the final symbol name of a
GlobalValue had to link with Target.
This patch implements a compromise solution where the mangler uses DataLayout.
This way, any tool that already links with Target (llc, clang) gets the exact
behavior as before and new IR files can be mangled without linking with Target.
With this patch the mangler is constructed with just a DataLayout and DataLayout
is extended to include the information the Mangler needs.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198438 91177308-0d34-0410-b5e6-96231b3b80d8
getSymbolWithGlobalValueBase use is to create a name of a new symbol based
on the name of an existing GV. Assert that and then remove the last call
to pass true to isImplicitlyPrivate.
This gives the mangler API a 1:1 mapping from GV to names, which is what we
need to drop the mangler dependency on the target (and use an extended
datalayout instead).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@196472 91177308-0d34-0410-b5e6-96231b3b80d8
Add user-supplied C runtime and compiler-rt library functions to
llvm.compiler.used to protect them from premature optimization by
passes like -globalopt and -ipsccp. Calls to (seemingly unused)
runtime library functions can be added by -instcombine and instruction
lowering.
Patch by Duncan Exon Smith, thanks!
Fixes <rdar://problem/14740087>
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194514 91177308-0d34-0410-b5e6-96231b3b80d8
There are two ways one could implement hiding of linkonce_odr symbols in LTO:
* LLVM tells the linker which symbols can be hidden if not used from native
files.
* The linker tells LLVM which symbols are not used from other object files,
but will be put in the dso symbol table if present.
GOLD's API is the second option. It was implemented almost 1:1 in llvm by
passing the list down to internalize.
LLVM already had partial support for the first option. It is also very similar
to how ld64 handles hiding these symbols when *not* doing LTO.
This patch then
* removes the APIs for the DSO list.
* marks LTO_SYMBOL_SCOPE_DEFAULT_CAN_BE_HIDDEN all linkonce_odr unnamed_addr
global values and other linkonce_odr whose address is not used.
* makes the gold plugin responsible for handling the API mismatch.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193800 91177308-0d34-0410-b5e6-96231b3b80d8
This deletes the Module ivar instead of having the LTO code generater do it. It
also sets the pointer to 'NULL', so that if it's used again it will abort
quickly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192778 91177308-0d34-0410-b5e6-96231b3b80d8
Generalize the API so we can distinguish symbols that are needed just for a DSO
symbol table from those that are used from some native .o.
The symbols that are only wanted for the dso symbol table can be dropped if
llvm can prove every other dso has a copy (linkonce_odr) and the address is not
important (unnamed_addr).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191922 91177308-0d34-0410-b5e6-96231b3b80d8
This was broken when options were moved up in r191680. No test because this is
specific LLVMgold.so/libLTO.so.
Patch by Tom Roeder!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191829 91177308-0d34-0410-b5e6-96231b3b80d8