Obviously we can't expect the two backends to produce identical diagnostics,
since what's possible depends quite a bit on how the .td files are structured.
I think the ARM64 diagnostics are basically of the same quality in all the
changed cases, so I've split the CHECK lines.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208084 91177308-0d34-0410-b5e6-96231b3b80d8
The canonical form of the BFM instruction is always one of the more explicit
extract or insert operations, which makes reading output much easier.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207752 91177308-0d34-0410-b5e6-96231b3b80d8
We already do this for shstrtab, so might as well do it for strtab. This
extracts the string table building code into a separate class. The idea
is to use it for other object formats too.
I mostly wanted to do this for the general principle, but it does save a
little bit on object file size. I tried this on a clang bootstrap and
saved 0.54% on the sum of object file sizes (1.14 MB out of 212 MB for
a release build).
Differential Revision: http://reviews.llvm.org/D3533
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207670 91177308-0d34-0410-b5e6-96231b3b80d8
It's been decided that in the future, the floating-point immediate in
instructions like "fcmeq v0.2s, v1.2s, #0.0" will be canonically "0.0", which
has been implemented on AArch64 already but not ARM64.
This fixes that issue.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207666 91177308-0d34-0410-b5e6-96231b3b80d8
This skips a couple of compare ones due to the different syntaxt for
floating-point 0.0. AArch64 does it more canonically, and we'll need to fiddle
ARM64 to make it work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207119 91177308-0d34-0410-b5e6-96231b3b80d8
This matches ARM64 behaviour, which I think is clearer. It also puts all the
churn from that difference into one easily ignored commit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207116 91177308-0d34-0410-b5e6-96231b3b80d8
These can have different relocations in ELF. In particular both:
b.eq global
ldr x0, global
are valid, giving different relocations. The only possible way to distinguish
them is via a different fixup, so the operands had to be separated throughout
the backend.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207105 91177308-0d34-0410-b5e6-96231b3b80d8
The test was changed from aarch64 to arm64 but not moved. The test would fail
if the backend was not built.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@207029 91177308-0d34-0410-b5e6-96231b3b80d8
For FCMEQ, FCMGE, FCMGT, FCMLE and FCMLT, floating point zero will be
printed as #0.0 instead of #0. To support the history codes using #0,
we consider to let asm parser accept both #0.0 and #0.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199621 91177308-0d34-0410-b5e6-96231b3b80d8
copy in MC layer. Added the MC layer tests. Fixed triple setting in test cases.
Patch by Ana Pazos <apazos@codeaurora.org>.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@194501 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a new subtarget feature called FPARMv8 (implied by NEON), and
predicates the support of the FP instructions and registers on this feature.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193739 91177308-0d34-0410-b5e6-96231b3b80d8
class. The instruction class includes the signed saturating doubling
multiply-add long, signed saturating doubling multiply-subtract long, and
the signed saturating doubling multiply long instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192908 91177308-0d34-0410-b5e6-96231b3b80d8
Patch by Ana Pazos.
1.Added support for v1ix and v1fx types.
2.Added Scalar Pairwise Reduce instructions.
3.Added initial implementation of Scalar Arithmetic instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191263 91177308-0d34-0410-b5e6-96231b3b80d8
Previously we modelled VPR128 and VPR64 as essentially identical
register-classes containing V0-V31 (which had Q0-Q31 as "sub_alias"
sub-registers). This model is starting to cause significant problems
for code generation, particularly writing EXTRACT/INSERT_SUBREG
patterns for converting between the two.
The change here switches to classifying VPR64 & VPR128 as
RegisterOperands, which are essentially aliases for RegisterClasses
with different parsing and printing behaviour. This fits almost
exactly with their real status (VPR128 == FPR128 printed strangely,
VPR64 == FPR64 printed strangely).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190665 91177308-0d34-0410-b5e6-96231b3b80d8
- Instead of setting the suffixes in a bunch of places, just set one master
list in the top-level config. We now only modify the suffix list in a few
suites that have one particular unique suffix (.ml, .mc, .yaml, .td, .py).
- Aside from removing the need for a bunch of lit.local.cfg files, this enables
4 tests that were inadvertently being skipped (one in
Transforms/BranchFolding, a .s file each in DebugInfo/AArch64 and
CodeGen/PowerPC, and one in CodeGen/SI which is now failing and has been
XFAILED).
- This commit also fixes a bunch of config files to use config.root instead of
older copy-pasted code.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188513 91177308-0d34-0410-b5e6-96231b3b80d8
Patch by Ana Pazos.
- Completed implementation of instruction formats:
AdvSIMD three same
AdvSIMD modified immediate
AdvSIMD scalar pairwise
- Completed implementation of instruction classes
(some of the instructions in these classes
belong to yet unfinished instruction formats):
Vector Arithmetic
Vector Immediate
Vector Pairwise Arithmetic
- Initial implementation of instruction formats:
AdvSIMD scalar two-reg misc
AdvSIMD scalar three same
- Intial implementation of instruction class:
Scalar Arithmetic
- Initial clang changes to support arm v8 intrinsics.
Note: no clang changes for scalar intrinsics function name mangling yet.
- Comprehensive test cases for added instructions
To verify auto codegen, encoding, decoding, diagnosis, intrinsics.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187567 91177308-0d34-0410-b5e6-96231b3b80d8
llvm-objdump should provide some way of printing out the addends present in the
.rela sections for debugging purposes if nothing else.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184072 91177308-0d34-0410-b5e6-96231b3b80d8
For COFF and MachO, sections semantically have relocations that apply to them.
That is not the case on ELF.
In relocatable objects (.o), a section with relocations in ELF has offsets to
another section where the relocations should be applied.
In dynamic objects and executables, relocations don't have an offset, they have
a virtual address. The section sh_info may or may not point to another section,
but that is not actually used for resolving the relocations.
This patch exposes that in the ObjectFile API. It has the following advantages:
* Most (all?) clients can handle this more efficiently. They will normally walk
all relocations, so doing an effort to iterate in a particular order doesn't
save time.
* llvm-readobj now prints relocations in the same way the native readelf does.
* probably most important, relocations that don't point to any section are now
visible. This is the case of relocations in the rela.dyn section. See the
updated relocation-executable.test for example.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@182908 91177308-0d34-0410-b5e6-96231b3b80d8
These tests rely specifically on the names of ELF relocations, let alone any
other detail. There's no way they'd work if LLVM was emitting something else by
default.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179376 91177308-0d34-0410-b5e6-96231b3b80d8
It turns out some platforms (e.g. Windows) lay out their llvm-mc slightly
differently with extra newlines; there was no real reason for the test lines to
be consecutive, so this relaxes the FileCheck.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179375 91177308-0d34-0410-b5e6-96231b3b80d8
This gives a DiagnosticType to all AsmOperands in sight. This replaces all
"invalid operand" diagnostics with something more specific. The messages given
should still be sufficiently vague that they're not usually actively misleading
when LLVM guesses your instruction incorrectly.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174871 91177308-0d34-0410-b5e6-96231b3b80d8
These instructions are a late addition to the architecture, and may
yet end up behind an optional attribute, but for now they're available
at all times.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174496 91177308-0d34-0410-b5e6-96231b3b80d8
This adds hints to the various "prfm" instructions so that they can
affect the instruction cache as well as the data cache.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174495 91177308-0d34-0410-b5e6-96231b3b80d8
Only Linux is supported at the moment, and other platforms quickly fault. As a
result these tests would fail on non-Linux hosts. It may be worth making the
tests more generic again as more platforms are supported.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174170 91177308-0d34-0410-b5e6-96231b3b80d8
This patch adds support for AArch64 (ARM's 64-bit architecture) to
LLVM in the "experimental" category. Currently, it won't be built
unless requested explicitly.
This initial commit should have support for:
+ Assembly of all scalar (i.e. non-NEON, non-Crypto) instructions
(except the late addition CRC instructions).
+ CodeGen features required for C++03 and C99.
+ Compilation for the "small" memory model: code+static data <
4GB.
+ Absolute and position-independent code.
+ GNU-style (i.e. "__thread") TLS.
+ Debugging information.
The principal omission, currently, is performance tuning.
This patch excludes the NEON support also reviewed due to an outbreak of
batshit insanity in our legal department. That will be committed soon bringing
the changes to precisely what has been approved.
Further reviews would be gratefully received.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174054 91177308-0d34-0410-b5e6-96231b3b80d8