optimizations which are valid for position independent code being linked
into a single executable, but not for such code being linked into
a shared library.
I discussed the design of this with Eric Christopher, and the decision
was to support an optional bit rather than a completely separate
relocation model. Fundamentally, this is still PIC relocation, its just
that certain optimizations are only valid under a PIC relocation model
when the resulting code won't be in a shared library. The simplest path
to here is to expose a single bit option in the TargetOptions. If folks
have different/better designs, I'm all ears. =]
I've included the first optimization based upon this: changing TLS
models to the *Exec models when PIE is enabled. This is the LLVM
component of PR12380 and is all of the hard work.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154294 91177308-0d34-0410-b5e6-96231b3b80d8
in TargetLowering. There was already a FIXME about this location being
odd. The interface is simplified as a consequence. This will also make
it easier to change TLS models when compiling with PIE.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154292 91177308-0d34-0410-b5e6-96231b3b80d8
optimizers could do this for us, but expecting partial SROA of classes
with template methods through cloning is probably expecting too much
heroics. With this change, the begin/end pointer pairs which indicate
the status of each loop iteration are actually passed directly into each
layer of the combine_data calls, and the inliner has a chance to see
when most of the combine_data function could be deleted by inlining.
Similarly for 'length'.
We have to be careful to limit the places where in/out reference
parameters are used as those will also defeat the inliner / optimizers
from properly propagating constants.
With this change, LLVM is able to fully inline and unroll the hash
computation of small sets of values, such as two or three pointers.
These now decompose into essentially straight-line code with no loops or
function calls.
There is still one code quality problem to be solved with the hashing --
LLVM is failing to nuke the alloca. It removes all loads from the
alloca, leaving only lifetime intrinsics and dead(!!) stores to the
alloca. =/ Very unfortunate.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154264 91177308-0d34-0410-b5e6-96231b3b80d8
by default.
This is a behaviour configurable in the MCAsmInfo. I've decided to turn
it on by default in (possibly optimistic) hopes that most assemblers are
reasonably sane. If this proves a problem, switching to default seems
reasonable.
I'm not sure if this is the opportune place to test, but it seemed good
to make sure it was tested somewhere.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154235 91177308-0d34-0410-b5e6-96231b3b80d8
The empty 1-argument operator delete is for the benefit of the
destructor. A couple of spot checks of running yaml-bench under
valgrind against a few of the files under test/YAMLParser did
not reveal any leaks introduced by this change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154137 91177308-0d34-0410-b5e6-96231b3b80d8
of the BBVectorizePass without using command line option. As pointed out
by Hal, we can ask the TargetLoweringInfo for the architecture specific
VectorizeConfig to perform vectorizing with architecture specific
information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154096 91177308-0d34-0410-b5e6-96231b3b80d8
BasicBlock in other passes, e.g. we can call vectorizeBasicBlock in the
loop unroll pass right after the loop is unrolled.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154089 91177308-0d34-0410-b5e6-96231b3b80d8
This allows us to keep passing reduced masks to SimplifyDemandedBits, but
know about all the bits if SimplifyDemandedBits fails. This allows instcombine
to simplify cases like the one in the included testcase.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154011 91177308-0d34-0410-b5e6-96231b3b80d8
The colorability heuristic should count these as denied registers.
No test case - this exposed a bug on an out-of-tree target.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153958 91177308-0d34-0410-b5e6-96231b3b80d8
brace) so that we get more accurate line number information about the
declaration of a given function and the line where the function
first starts.
Part of rdar://11026482
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153916 91177308-0d34-0410-b5e6-96231b3b80d8
This patch allows llvm to recognize that a 64 bit object file is being produced
and that the subsequently generated ELF header has the correct information.
The test case checks for both big and little endian flavors.
Patch by Jack Carter.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153889 91177308-0d34-0410-b5e6-96231b3b80d8
rather than a bitfield, a great suggestion by Chris during code review.
There is still quite a bit of cruft in the interface, but that requires
sorting out some awkward uses of the cost inside the actual inliner.
No functionality changed intended here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153853 91177308-0d34-0410-b5e6-96231b3b80d8
This also avoids emitting the information twice, which led to code bloat. On i386-linux-Release+Asserts
with all targets built this change shaves a whopping 1.3 MB off clang. The number is probably exaggerated
by recent inliner changes but the methods were already enormous with the old inline cost computation.
The DWARF reg -> LLVM reg mapping doesn't seem to have holes in it, so it could be a simple lookup table.
I didn't implement that optimization yet to avoid potentially changing functionality.
There is still some duplication both in tablegen and the generated code that should be cleaned up eventually.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153837 91177308-0d34-0410-b5e6-96231b3b80d8
This is the CodeGen equivalent of r153747. I tested that there is not noticeable
performance difference with any combination of -O0/-O2 /-g when compiling
gcc as a single compilation unit.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153817 91177308-0d34-0410-b5e6-96231b3b80d8
interfaces. These methods were used in the old inline cost system where
there was a persistent cache that had to be updated, invalidated, and
cleared. We're now doing more direct computations that don't require
this intricate dance. Even if we resume some level of caching, it would
almost certainly have a simpler and more narrow interface than this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153813 91177308-0d34-0410-b5e6-96231b3b80d8
on a per-callsite walk of the called function's instructions, in
breadth-first order over the potentially reachable set of basic blocks.
This is a major shift in how inline cost analysis works to improve the
accuracy and rationality of inlining decisions. A brief outline of the
algorithm this moves to:
- Build a simplification mapping based on the callsite arguments to the
function arguments.
- Push the entry block onto a worklist of potentially-live basic blocks.
- Pop the first block off of the *front* of the worklist (for
breadth-first ordering) and walk its instructions using a custom
InstVisitor.
- For each instruction's operands, re-map them based on the
simplification mappings available for the given callsite.
- Compute any simplification possible of the instruction after
re-mapping, and store that back int othe simplification mapping.
- Compute any bonuses, costs, or other impacts of the instruction on the
cost metric.
- When the terminator is reached, replace any conditional value in the
terminator with any simplifications from the mapping we have, and add
any successors which are not proven to be dead from these
simplifications to the worklist.
- Pop the next block off of the front of the worklist, and repeat.
- As soon as the cost of inlining exceeds the threshold for the
callsite, stop analyzing the function in order to bound cost.
The primary goal of this algorithm is to perfectly handle dead code
paths. We do not want any code in trivially dead code paths to impact
inlining decisions. The previous metric was *extremely* flawed here, and
would always subtract the average cost of two successors of
a conditional branch when it was proven to become an unconditional
branch at the callsite. There was no handling of wildly different costs
between the two successors, which would cause inlining when the path
actually taken was too large, and no inlining when the path actually
taken was trivially simple. There was also no handling of the code
*path*, only the immediate successors. These problems vanish completely
now. See the added regression tests for the shiny new features -- we
skip recursive function calls, SROA-killing instructions, and high cost
complex CFG structures when dead at the callsite being analyzed.
Switching to this algorithm required refactoring the inline cost
interface to accept the actual threshold rather than simply returning
a single cost. The resulting interface is pretty bad, and I'm planning
to do lots of interface cleanup after this patch.
Several other refactorings fell out of this, but I've tried to minimize
them for this patch. =/ There is still more cleanup that can be done
here. Please point out anything that you see in review.
I've worked really hard to try to mirror at least the spirit of all of
the previous heuristics in the new model. It's not clear that they are
all correct any more, but I wanted to minimize the change in this single
patch, it's already a bit ridiculous. One heuristic that is *not* yet
mirrored is to allow inlining of functions with a dynamic alloca *if*
the caller has a dynamic alloca. I will add this back, but I think the
most reasonable way requires changes to the inliner itself rather than
just the cost metric, and so I've deferred this for a subsequent patch.
The test case is XFAIL-ed until then.
As mentioned in the review mail, this seems to make Clang run about 1%
to 2% faster in -O0, but makes its binary size grow by just under 4%.
I've looked into the 4% growth, and it can be fixed, but requires
changes to other parts of the inliner.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153812 91177308-0d34-0410-b5e6-96231b3b80d8
visitor will now visit a CallInst and an InvokeInst with
instruction-specific visitors, then visit a generic CallSite visitor,
then delegate back to the Instruction visitor and the TerminatorInst
visitors depending on whether a call or an invoke originally. This will
be used in the soon-to-land inline cost rewrite.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153811 91177308-0d34-0410-b5e6-96231b3b80d8
Use an explicit comparator instead of the default.
The sets are sorted, but not using the default comparator. Hopefully,
this will unbreak the Linux builders.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153772 91177308-0d34-0410-b5e6-96231b3b80d8
TableGen emits lists of sub-registers, super-registers, and overlaps. Put
them all in a single table and use a SequenceToOffsetTable to share
suffixes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153761 91177308-0d34-0410-b5e6-96231b3b80d8
1. The main works will made in the RuntimeDyLdImpl with uses the ObjectFile class. RuntimeDyLdMachO and RuntimeDyLdELF now only parses relocations and resolve it. This is allows to make improvements of the RuntimeDyLd more easily. In addition the support for COFF can be easily added.
2. Added ARM relocations to RuntimeDyLdELF.
3. Added support for stub functions for the ARM, allowing to do a long branch.
4. Added support for external functions that are not loaded from the object files, but can be loaded from external libraries. Now MCJIT can correctly execute the code containing the printf, putc, and etc.
5. The sections emitted instead functions, thanks Jim Grosbach. MemoryManager.startFunctionBody() and MemoryManager.endFunctionBody() have been removed.
6. MCJITMemoryManager.allocateDataSection() and MCJITMemoryManager. allocateCodeSection() used JMM->allocateSpace() instead of JMM->allocateCodeSection() and JMM->allocateDataSection(), because I got an error: "Cannot allocate an allocated block!" with object file contains more than one code or data sections.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153754 91177308-0d34-0410-b5e6-96231b3b80d8
Some targets still mess up the liveness information, but that isn't
verified after MRI->invalidateLiveness().
The verifier can still check other useful things like register classes
and CFG, so it should be enabled after all passes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153615 91177308-0d34-0410-b5e6-96231b3b80d8
blocks in the function cloner. This removes the last case of trivially
dead code that I've been seeing in the wild getting inlined, analyzed,
re-inlined, optimized, only to be deleted. Nukes a FIXME from the
cleanup tests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153572 91177308-0d34-0410-b5e6-96231b3b80d8
Late optimization passes like branch folding and tail duplication can
transform the machine code in a way that makes it expensive to keep the
register liveness information up to date. There is a fuzzy line between
register allocation and late scheduling where the liveness information
degrades.
The MRI::tracksLiveness() flag makes the line clear: While true,
liveness information is accurate, and can be used for register
scavenging. Once the flag is false, liveness information is not
accurate, and can only be used as a hint.
Late passes generally don't need the liveness information, but they will
sometimes use the register scavenger to help update it. The scavenger
enforces strict correctness, and we have to spend a lot of code to
update register liveness that may never be used.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153511 91177308-0d34-0410-b5e6-96231b3b80d8
bit simpler by handling a common case explicitly.
Also, refactor the implementation to use a worklist based walk of the
recursive users, rather than trying to use value handles to detect and
recover from RAUWs during the recursive descent. This fixes a very
subtle bug in the previous implementation where degenerate control flow
structures could cause mutually recursive instructions (PHI nodes) to
collapse in just such a way that From became equal to To after some
amount of recursion. At that point, we hit the inf-loop that the assert
at the top attempted to guard against. This problem is defined away when
not using value handles in this manner. There are lots of comments
claiming that the WeakVH will protect against just this sort of error,
but they're not accurate about the actual implementation of WeakVHs,
which do still track RAUWs.
I don't have any test case for the bug this fixes because it requires
running the recursive simplification on unreachable phi nodes. I've no
way to either run this or easily write an input that triggers it. It was
found when using instruction simplification inside the inliner when
running over the nightly test-suite.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153393 91177308-0d34-0410-b5e6-96231b3b80d8
This is necessary if the client wants to be able to mutate TargetOptions (for example, fast FP math mode) after the initial creation of the ExecutionEngine.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153342 91177308-0d34-0410-b5e6-96231b3b80d8
the PassManager annoying and should be reimplemented as a decorator
on top of existing passes (as should the timing data).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153305 91177308-0d34-0410-b5e6-96231b3b80d8
(and hopefully on Windows). The bots have been down most of the day
because of this, and it's not clear to me what all will be required to
fix it.
The commits started with r153205, then r153207, r153208, and r153221.
The first commit seems to be the real culprit, but I couldn't revert
a smaller number of patches.
When resubmitting, r153207 and r153208 should be folded into r153205,
they were simple build fixes.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153241 91177308-0d34-0410-b5e6-96231b3b80d8
1. Declare a virtual function getPointerToNamedFunction() in JITMemoryManager
2. Move the implementation of getPointerToNamedFunction() form JIT/MCJIT to DefaultJITMemoryManager.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153205 91177308-0d34-0410-b5e6-96231b3b80d8
Remaining "uncategorized" functions have been organized into their
proper place in the hierarchy. Some functions were moved around so
groups are defined together.
No code changes were made.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153169 91177308-0d34-0410-b5e6-96231b3b80d8
This gives a lot of love to the docs for the C API. Like Clang's
documentation, the C API is now organized into a Doxygen "module"
(LLVMC). Each C header file is a child of the main module. Some modules
(like Core) have a hierarchy of there own. The produced documentation is
thus better organized (before everything was in one monolithic list).
This patch also includes a lot of new documentation for APIs in Core.h.
It doesn't document them all, but is better than none. Function docs are
missing @param and @return annotation, but the documentation body now
commonly provides help details (like the expected llvm::Value sub-type
to expect).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153157 91177308-0d34-0410-b5e6-96231b3b80d8
ImmutAVLTree uses random unsigned values as keys into a DenseMap,
which could possibly happen to be the same value as the Tombstone or
Entry keys in the DenseMap.
Test case is hard to come up with. We randomly get failures on the
internal static analyzer bot, which most likely hits this issue
(hard to be 100% sure without the full stack).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153148 91177308-0d34-0410-b5e6-96231b3b80d8
violations I introduced. Also sort some of the instructions to get
a more consistent ordering.
Suggestions on still better / more consistent formatting would be
welcome. I'm actually tempted to use a macro to define all of the
delegate methods...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@153030 91177308-0d34-0410-b5e6-96231b3b80d8
directly query the function information which this set was representing.
This simplifies the interface of the inline cost analysis, and makes the
always-inline pass significantly more efficient.
Previously, always-inline would first make a single set of every
function in the module *except* those marked with the always-inline
attribute. It would then query this set at every call site to see if the
function was a member of the set, and if so, refuse to inline it. This
is quite wasteful. Instead, simply check the function attribute directly
when looking at the callsite.
The normal inliner also had similar redundancy. It added every function
in the module with the noinline attribute to its set to ignore, even
though inside the cost analysis function we *already tested* the
noinline attribute and produced the same result.
The only tricky part of removing this is that we have to be able to
correctly remove only the functions inlined by the always-inline pass
when finalizing, which requires a bit of a hack. Still, much less of
a hack than the set of all non-always-inline functions was. While I was
touching this function, I switched a heavy-weight set to a vector with
sort+unique. The algorithm already had a two-phase insert and removal
pattern, we were just needlessly paying the uniquing cost on every
insert.
This probably speeds up some compiles by a small amount (-O0 compiles
with lots of always-inline, so potentially heavy libc++ users), but I've
not tried to measure it.
I believe there is no functional change here, but yell if you spot one.
None are intended.
Finally, the direction this is going in is to greatly simplify the
inline cost query interface so that we can replace its implementation
with a much more clever one. Along the way, all the APIs get simplified,
so it seems incrementally good.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152903 91177308-0d34-0410-b5e6-96231b3b80d8
analysis implementation. The header was already separated. Also cleanup
all the comments in the header to follow a nice modern doxygen form.
There is still plenty of cruft here, but some of that will fall out in
subsequent refactorings and this was an easy step in the right
direction. No functionality changed here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152898 91177308-0d34-0410-b5e6-96231b3b80d8
Only record IVUsers that are dominated by simplified loop
headers. Otherwise SCEVExpander will crash while looking for a
preheader.
I previously tried to work around this in LSR itself, but that was
insufficient. This way, LSR can continue to run if some uses are not
in simple loops, as long as we don't attempt to analyze those users.
Fixes <rdar://problem/11049788> Segmentation fault: 11 in LoopStrengthReduce
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152892 91177308-0d34-0410-b5e6-96231b3b80d8
It caused MSP430DAGToDAGISel::SelectIndexedBinOp() to be miscompiled.
When two ReplaceUses()'s are expanded as inline, vtable in base class is stored to latter (ISelUpdater)ISU.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152877 91177308-0d34-0410-b5e6-96231b3b80d8
We cannot limit the concatenated instruction names to 64K. ARM is
already at 32K, and it is easy to imagine a target with more
instructions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152817 91177308-0d34-0410-b5e6-96231b3b80d8
changed since. No one was using it. It is yet another consumer of the
InlineCost interface that I'd like to change.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152769 91177308-0d34-0410-b5e6-96231b3b80d8
correlated pairs of pointer arguments at the callsite. This is designed
to recognize the common C++ idiom of begin/end pointer pairs when the
end pointer is a constant offset from the begin pointer. With the
C-based idiom of a pointer and size, the inline cost saw the constant
size calculation, and this provides the same level of information for
begin/end pairs.
In order to propagate this information we have to search for candidate
operations on a pair of pointer function arguments (or derived from
them) which would be simplified if the pointers had a known constant
offset. Then the callsite analysis looks for such pointer pairs in the
argument list, and applies the appropriate bonus.
This helps LLVM detect that half of bounds-checked STL algorithms
(such as hash_combine_range, and some hybrid sort implementations)
disappear when inlined with a constant size input. However, it's not
a complete fix due the inaccuracy of our cost metric for constants in
general. I'm looking into that next.
Benchmarks showed no significant code size change, and very minor
performance changes. However, specific code such as hashing is showing
significantly cleaner inlining decisions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152752 91177308-0d34-0410-b5e6-96231b3b80d8
Commit r152704 exposed a latent MSVC limitation (aka bug).
Both ilist and and iplist contains the same function:
template<class InIt> void insert(iterator where, InIt first, InIt last) {
for (; first != last; ++first) insert(where, *first);
}
Also ilist inherits from iplist and ilist contains a "using iplist<NodeTy>::insert".
MSVC doesn't know which one to pick and complain with an error.
I think it is safe to delete ilist::insert since it is redundant anyway.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152746 91177308-0d34-0410-b5e6-96231b3b80d8
New flags: -misched-topdown, -misched-bottomup. They can be used with
the default scheduler or with -misched=shuffle. Without either
topdown/bottomup flag -misched=shuffle now alternates scheduling
direction.
LiveIntervals update is unimplemented with bottom-up scheduling, so
only -misched-topdown currently works.
Capped the ScheduleDAG hierarchy with a concrete ScheduleDAGMI class.
ScheduleDAGMI is aware of the top and bottom of the unscheduled zone
within the current region. Scheduling policy can be plugged into
the ScheduleDAGMI driver by implementing MachineSchedStrategy.
ConvergingScheduler is now the default scheduling algorithm.
It exercises the new driver but still does no reordering.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152700 91177308-0d34-0410-b5e6-96231b3b80d8
take a TargetLibraryInfo parameter. Internally, rather than passing TD, TLI
and DT parameters around all over the place, introduce a struct for holding
them.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152623 91177308-0d34-0410-b5e6-96231b3b80d8
Also refactor the existing OProfile profiling code to reuse the same interfaces with the VTune profiling code.
In addition, unit tests for the profiling interfaces were added.
This patch was prepared by Andrew Kaylor and Daniel Malea, and reviewed in the llvm-commits list by Jim Grosbach
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152620 91177308-0d34-0410-b5e6-96231b3b80d8
Renamed methods caseBegin, caseEnd and caseDefault with case_begin, case_end, and case_default.
Added some notes relative to case iterators.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152532 91177308-0d34-0410-b5e6-96231b3b80d8
a common collection of methods on Value, and share their implementation.
We had two variations in two different places already, and I need the
third variation for inline cost estimation.
Reviewed by Duncan Sands on IRC, but further comments here welcome.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152490 91177308-0d34-0410-b5e6-96231b3b80d8
* Add enums and structures for GNU version information.
* Implement extraction of that information on a per-symbol basis (ELFObjectFile::getSymbolVersion).
* Implement a generic interface, GetELFSymbolVersion(), for getting the symbol version from the ObjectFile (hides the templating).
* Have llvm-readobj print out the version, when available.
* Add a test for the new feature: readobj-elf-versioning.test
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152436 91177308-0d34-0410-b5e6-96231b3b80d8
caused several clients to select the slow variation. =[ This is extra
annoying because we don't have any realistic way of testing this -- by
design, these two functions *must* compute the same value.
Found while inspecting the output of some benchmarks I'm working on.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152369 91177308-0d34-0410-b5e6-96231b3b80d8
buildbots. Original commit message:
[ADT] Change the trivial FoldingSetNodeID::Add* methods to be inline, reapplied
with a fix for the longstanding over-read of 32-bit pointer values.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152304 91177308-0d34-0410-b5e6-96231b3b80d8
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20120130/136146.html
Implemented CaseIterator and it solves almost all described issues: we don't need to mix operand/case/successor indexing anymore. Base iterator class is implemented as a template since it may be initialized either from "const SwitchInst*" or from "SwitchInst*".
ConstCaseIt is just a read-only iterator.
CaseIt is read-write iterator; it allows to change case successor and case value.
Usage of iterator allows totally remove resolveXXXX methods. All indexing convertions done automatically inside the iterator's getters.
Main way of iterator usage looks like this:
SwitchInst *SI = ... // intialize it somehow
for (SwitchInst::CaseIt i = SI->caseBegin(), e = SI->caseEnd(); i != e; ++i) {
BasicBlock *BB = i.getCaseSuccessor();
ConstantInt *V = i.getCaseValue();
// Do something.
}
If you want to convert case number to TerminatorInst successor index, just use getSuccessorIndex iterator's method.
If you want initialize iterator from TerminatorInst successor index, use CaseIt::fromSuccessorIndex(...) method.
There are also related changes in llvm-clients: klee and clang.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152297 91177308-0d34-0410-b5e6-96231b3b80d8
Original commit message:
Use uint16_t to store InstrNameIndices in MCInstrInfo. Add asserts to protect all 16-bit string table offsets. Also make sure the string to offset table string is not larger than 65536 characters since larger string literals aren't portable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152296 91177308-0d34-0410-b5e6-96231b3b80d8
analysis to be methods on the cost analysis's function info object
instead of the code metrics object. These really are just users of the
code metrics, they're building the information for the function's
analysis.
This is the first step of growing the amount of information we collect
about a function in order to cope with pair-wise simplifications due to
allocas.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152283 91177308-0d34-0410-b5e6-96231b3b80d8
Allow targets to provide their own schedulers (subclass of
ScheduleDAGInstrs) to the misched pass. Select schedulers using
-misched=...
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152278 91177308-0d34-0410-b5e6-96231b3b80d8
Original commit message:
Use uint16_t to store InstrNameIndices in MCInstrInfo. Add asserts to protect
all 16-bit string table offsets. Also make sure the string to offset table
string is not larger than 65536 characters since larger string literals aren't
portable.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152233 91177308-0d34-0410-b5e6-96231b3b80d8
compilers. It seems that GCC 4.3 (and likely older) simply aren't going
to do SFINAE on non-type template parameters the way Clang and modern
GCCs do...
Now we detect the implicit conversion to an integer type, and then
blacklist classes, pointers, and floating point types. This seems to
work well enough, and I'm hopeful will return the bots to life.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152227 91177308-0d34-0410-b5e6-96231b3b80d8
traits.
With this change, the pattern used here is *extremely* close to the
pattern used elsewhere in the file, so I'm hoping it survives the
build-bots.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152225 91177308-0d34-0410-b5e6-96231b3b80d8
template argument and an *implicit* conversion from '0' to a null
pointer. For some bizarre reason, GCC 4.3.2 thinks that the cast to
'(T*)' is invalid inside of an enumerator's value... which it isn't but
whatever. ;] This pattern is used elsewhere in the type_traits header
and so hopefully will survive the wrath of the build bots.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152220 91177308-0d34-0410-b5e6-96231b3b80d8
Deleting them because they aren't used. =D
Yell if you need these, I'm happy to instead replace them with nice uses
of the new infrastructure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152219 91177308-0d34-0410-b5e6-96231b3b80d8
integral and enumeration types. This is accomplished with a bit of
template type trait magic. Thanks to Richard Smith for the core idea
here to detect viable types by detecting the set of types which can be
default constructed in a template parameter.
This is used (in conjunction with a system for detecting nullptr_t
should it exist) to provide an is_integral_or_enum type trait that
doesn't need a whitelist or direct compiler support.
With this, the hashing is extended to the more general facility. This
will be used in a subsequent commit to hashing more things, but I wanted
to make sure the type trait magic went through the build bots separately
in case other compilers don't like this formulation.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152217 91177308-0d34-0410-b5e6-96231b3b80d8
ScheduleDAG is responsible for the DAG: SUnits and SDeps. It provides target hooks for latency computation.
ScheduleDAGInstrs extends ScheduleDAG and defines the current scheduling region in terms of MachineInstr iterators. It has access to the target's scheduling itinerary data. ScheduleDAGInstrs provides the logic for building the ScheduleDAG for the sequence of MachineInstrs in the current region. Target's can implement highly custom schedulers by extending this class.
ScheduleDAGPostRATDList provides the driver and diagnostics for current postRA scheduling. It maintains a current Sequence of scheduled machine instructions and logic for splicing them into the block. During scheduling, it uses the ScheduleHazardRecognizer provided by the target.
Specific changes:
- Removed driver code from ScheduleDAG. clearDAG is the only interface needed.
- Added enterRegion/exitRegion hooks to ScheduleDAGInstrs to delimit the scope of each scheduling region and associated DAG. They should be used to setup and cleanup any region-specific state in addition to the DAG itself. This is necessary because we reuse the same ScheduleDAG object for the entire function. The target may extend these hooks to do things at regions boundaries, like bundle terminators. The hooks are called even if we decide not to schedule the region. So all instructions in a block are "covered" by these calls.
- Added ScheduleDAGInstrs::begin()/end() public API.
- Moved Sequence into the driver layer, which is specific to the scheduling algorithm.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152208 91177308-0d34-0410-b5e6-96231b3b80d8
"is sized". This prevents every query to isSized() from recursing over
every sub-type of a struct type. This could get *very* slow for
extremely deep nesting of structs, as in 177.mesa.
This change is a 45% speedup for 'opt -O2' of 177.mesa.linked.bc, and
likely a significant speedup for other cases as well. It even impacts
-O0 cases because so many part of the code try to check whether a type
is sized.
Thanks for the review from Nick Lewycky and Benjamin Kramer on IRC.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152197 91177308-0d34-0410-b5e6-96231b3b80d8
This currently assumes that both sets have the same SmallSize to keep the implementation simple,
a limitation that can be lifted if someone cares.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152143 91177308-0d34-0410-b5e6-96231b3b80d8
With the new composite physical registers to represent arbitrary pairs
of DPR registers, we don't need the pseudo-registers anymore. Get rid of
a bunch of them that use DPR register pairs and just use the real
instructions directly instead.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152045 91177308-0d34-0410-b5e6-96231b3b80d8
complains about the truncation of a 64-bit constant to a 32-bit value
when size_t is 32-bits wide, but *only with static_cast*!!! The exact
signal that should *silence* such a warning, and in fact does silence it
with both GCC and Clang.
Anyways, this was causing grief for all the MSVC builds, so pointless
change made. Thanks to Nikola on IRC for confirming that this works.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152021 91177308-0d34-0410-b5e6-96231b3b80d8
MachineOperands that define part of a virtual register must have an
<undef> flag if they are not intended as read-modify-write operands.
The old trick of adding an <imp-def> operand doesn't work any longer.
Fixes PR12177.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152008 91177308-0d34-0410-b5e6-96231b3b80d8
new hash_value infrastructure, and replace their implementations using
hash_combine. This removes a complete copy of Jenkin's lookup3 hash
function (which is both significantly slower and lower quality than the
one implemented in hash_combine) along with a somewhat scary xor-only
hash function.
Now that APInt and APFloat can be passed directly to hash_combine,
simplify the rest of the LLVMContextImpl hashing to use the new
infrastructure.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152004 91177308-0d34-0410-b5e6-96231b3b80d8
The optimizer should handle this eventually, but currently LVI isn't really designed for this kind of stuff.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151918 91177308-0d34-0410-b5e6-96231b3b80d8
folks who know something about PPC tell me that the byte swap is crazy
fast and without this the bit mixture would actually be different. It
might not be worse, but I've not measured it and so I'd rather not trust
it. This way, the algorithm is identical on both endianness hosts. I'll
look into any performance issues etc stemming from this.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151892 91177308-0d34-0410-b5e6-96231b3b80d8
just ensure that the number of bytes in the pair is the sum of the bytes
in each side of the pair. As long as thats true, there are no extra
bytes that might be padding.
Also add a few tests that previously would have slipped through the
checking. The more accurate checking mechanism catches these and ensures
they are handled conservatively correctly.
Thanks to Duncan for prodding me to do this right and more simply.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151891 91177308-0d34-0410-b5e6-96231b3b80d8
hashable data. This matters when we have pair<T*, U*> as a key, which is
quite common in DenseMap, etc. To that end, we need to detect when this
is safe. The requirements on a generic std::pair<T, U> are:
1) Both T and U must satisfy the existing is_hashable_data trait. Note
that this includes the requirement that T and U have no internal
padding bits or other bits not contributing directly to equality.
2) The alignment constraints of std::pair<T, U> do not require padding
between consecutive objects.
3) The alignment constraints of U and the size of T do not conspire to
require padding between the first and second elements.
Grow two somewhat magical traits to detect this by forming a pod
structure and inspecting offset artifacts on it. Hopefully this won't
cause any compilers to panic.
Added and adjusted tests now that pairs, even nested pairs, are treated
as just sequences of data.
Thanks to Jeffrey Yasskin for helping me sort through this and reviewing
the somewhat subtle traits.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151883 91177308-0d34-0410-b5e6-96231b3b80d8
an open question of whether we can do better than this by treating pairs
as boring data containers and directly hashing the two subobjects. This
at least makes the API reasonable.
In order to make this change, I reorganized the header a bit. I lifted
the declarations of the hash_value functions up to the top of the header
with their doxygen comments as these are intended for users to interact
with. They shouldn't have to wade through implementation details. I then
defined them at the very end so that they could be defined in terms of
hash_combine or any other hashing infrastructure.
Added various pair-hashing unittests.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151882 91177308-0d34-0410-b5e6-96231b3b80d8
the hash_code. I'm not sure what I was thinking here, the use cases for
special values are in the *keys*, not in the hashes of those keys.
We can always resurrect this if needed, or clients can accomplish the
same goal themselves. This makes the general case somewhat faster (~5
cycles faster on my machine) and smaller with less branching.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151865 91177308-0d34-0410-b5e6-96231b3b80d8
of the proposed standard hashing interfaces (N3333), and to use
a modified and tuned version of the CityHash algorithm.
Some of the highlights of this change:
-- Significantly higher quality hashing algorithm with very well
distributed results, and extremely few collisions. Should be close to
a checksum for up to 64-bit keys. Very little clustering or clumping of
hash codes, to better distribute load on probed hash tables.
-- Built-in support for reserved values.
-- Simplified API that composes cleanly with other C++ idioms and APIs.
-- Better scaling performance as keys grow. This is the fastest
algorithm I've found and measured for moderately sized keys (such as
show up in some of the uniquing and folding use cases)
-- Support for enabling per-execution seeds to prevent table ordering
or other artifacts of hashing algorithms to impact the output of
LLVM. The seeding would make each run different and highlight these
problems during bootstrap.
This implementation was tested extensively using the SMHasher test
suite, and pased with flying colors, doing better than the original
CityHash algorithm even.
I've included a unittest, although it is somewhat minimal at the moment.
I've also added (or refactored into the proper location) type traits
necessary to implement this, and converted users of GeneralHash over.
My only immediate concerns with this implementation is the performance
of hashing small keys. I've already started working to improve this, and
will continue to do so. Currently, the only algorithms faster produce
lower quality results, but it is likely there is a better compromise
than the current one.
Many thanks to Jeffrey Yasskin who did most of the work on the N3333
paper, pair-programmed some of this code, and reviewed much of it. Many
thanks also go to Geoff Pike Pike and Jyrki Alakuijala, the original
authors of CityHash on which this is heavily based, and Austin Appleby
who created MurmurHash and the SMHasher test suite.
Also thanks to Nadav, Tobias, Howard, Jay, Nick, Ahmed, and Duncan for
all of the review comments! If there are further comments or concerns,
please let me know and I'll jump on 'em.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151822 91177308-0d34-0410-b5e6-96231b3b80d8
Allows us to de-virtualize the function and provides access to it in
the instruction printer, which is useful for handling composite
physical registers (e.g., ARM register lists).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151815 91177308-0d34-0410-b5e6-96231b3b80d8
This allows us to make TRC non-polymorphic and value-initializable, eliminating a huge static
initializer and a ton of cruft from the generated code.
Shrinks ARMBaseRegisterInfo.o by ~100k.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151806 91177308-0d34-0410-b5e6-96231b3b80d8
Simply treat bundles as instructions. Spill code is inserted between
bundles, never inside a bundle. Rewrite all operands in a bundle at
once.
Don't attempt and memory operand folding inside bundles.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151787 91177308-0d34-0410-b5e6-96231b3b80d8
* Add begin_dynamic_table() / end_dynamic_table() private interface to ELFObjectFile.
* Add begin_libraries_needed() / end_libraries_needed() interface to ObjectFile, for grabbing the list of needed libraries for a shared object or dynamic executable.
* Implement this new interface completely for ELF, leave stubs for COFF and MachO.
* Add 'llvm-readobj' tool for dumping ObjectFile information.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151785 91177308-0d34-0410-b5e6-96231b3b80d8
This allows the function to be inlined, and makes it suitable for use in
getInstructionIndex().
Also provide a const version. C++ is great for touch typing practice.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151782 91177308-0d34-0410-b5e6-96231b3b80d8