We used to crash processing any relevant @llvm.assume on a 32-bit target
(because we'd ask SE to subtract expressions of differing types). I've copied
our 'simple.ll' test, but with the data layout from arm-linux-gnueabihf to get
some meaningful test coverage here.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217574 91177308-0d34-0410-b5e6-96231b3b80d8
The routine that determines an alignment given some SCEV returns zero if the
answer is unknown. In a case where we could determine the increment of an
AddRec but not the starting alignment, we would compute the integer modulus by
zero (which is illegal and traps). Prevent this by returning early if either
the start or increment alignment is unknown (zero).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217544 91177308-0d34-0410-b5e6-96231b3b80d8
This adds a ScalarEvolution-powered transformation that updates load, store and
memory intrinsic pointer alignments based on invariant((a+q) & b == 0)
expressions. Many of the simple cases we can get with ValueTracking, but we
still need something like this for the more complicated cases (such as those
with an offset) that require some algebra. Note that gcc's
__builtin_assume_aligned's optional third argument provides exactly for this
kind of 'misalignment' offset for which this kind of logic is necessary.
The primary motivation is to fixup alignments for vector loads/stores after
vectorization (and unrolling). This pass is added to the optimization pipeline
just after the SLP vectorizer runs (which, admittedly, does not preserve SE,
although I imagine it could). Regardless, I actually don't think that the
preservation matters too much in this case: SE computes lazily, and this pass
won't issue any SE queries unless there are any assume intrinsics, so there
should be no real additional cost in the common case (SLP does preserve DT and
LoopInfo).
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217344 91177308-0d34-0410-b5e6-96231b3b80d8