I followed three heuristics for deciding whether to set 'true' or
'false':
- Everything target independent got 'true' as that is the expected
common output of the GCC builtins.
- If the target arch only has one way of implementing this operation,
set the flag in the way that exercises the most of codegen. For most
architectures this is also the likely path from a GCC builtin, with
'true' being set. It will (eventually) require lowering away that
difference, and then lowering to the architecture's operation.
- Otherwise, set the flag differently dependending on which target
operation should be tested.
Let me know if anyone has any issue with this pattern or would like
specific tests of another form. This should allow the x86 codegen to
just iteratively improve as I teach the backend how to differentiate
between the two forms, and everything else should remain exactly the
same.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146370 91177308-0d34-0410-b5e6-96231b3b80d8
CTTZ and CTPOP. The expansion code differs from
that in LegalizeDAG in that it chooses to take the
CTLZ/CTTZ count from the Hi/Lo part depending on
whether the Hi/Lo value is zero, not on whether
CTLZ/CTTZ of Hi/Lo returned 32 (or whatever the
width of the type is) for it. I made this change
because the optimizers may well know that Hi/Lo
is zero and exploit it. The promotion code for
CTTZ also differs from that in LegalizeDAG: it
uses an "or" to get the right result when the
original value is zero, rather than using a compare
and select. This also means the value doesn't
need to be zero extended.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@47075 91177308-0d34-0410-b5e6-96231b3b80d8